KIRAN SAJJAN

55 Reputation

8 Badges

3 years, 19 days

MaplePrimes Activity


These are questions asked by KIRAN SAJJAN

Hello everyone,

I am trying to reproduce some results from the paper:

Peristaltic flow of a magnetohydrodynamic nanofluid through a bifurcated channel

I want to generate:

  • Fig 1 (channel geometry)

  • Fig 8 (pressure gradient vs axial coordinate ξ)

  • Fig 11 (streamlines)

  • Table 1 (resistance values)

I am using Maple 2018.

Below is my Maple code:
p1_ravi_sir.mw

Problem:

The plots do not match the paper

p1_ravi_sir.pdf

Why does my resistance value not change with M

 Could someone please help me:

  • Correct the Maple code

  • Solve equations (18–22) properly in Maple

  • Generate the correct plots 

Thank you very much.

Variation of (a) Skin friction ∂W/∂Z​, (b) Heat Transfer ∂θ/∂Z​, and (c) Mass Transfer ∂ϕ/∂Z​ for γ=10.0, Pr=7.0, ε=1.0, Nt=0.4, and Nb=0.2.

10.0   0.03301 1.90406 0.21772
20.0   0.01212 1.90403 0.20269
30.0   0.00727 1.90402 0.19325
40.0   0.00522 1.90400 0.18645


how to get this values by solving the PDE by using the pdsolve method 

Variation of (a)W(b) θ and (c) ϕ for different value of γ when ε = 10.0, Nb = 0.4, ε = 10.0, Sc = 0.5 and Pr = 7.0.
consider X as 0.1

plume_work.mw

How to get a 2D plot for the following command: 
error_in_2d_plot_cf_and_nu.mw

I am trying to plot a contour graph for my problem for (psi) function in the particular boundary, and even though it's working, but the contour  plot is not appearing at the end. Could anyone help me with the code to get proper graph in the specified boundary. 

i have ploted the graph in python i got a plot similar to that i am trying maple but i am not able to plot it. could any one help me to solve.

contour_plots_error_in_wavey_flow.mw

Dear sir here not matching the table values in the given pdf and if the Bc ((D(D(f)))(1) = 0) is also not satisfying 

thin_film_base_paper_comparision.mw

restart;
with(PDEtools):
with(plots):
with(LinearAlgebra):

A1 := 1:

# A2: Density coefficient
A2 := 1:

# A3: Thermal conductivity coefficient (Maxwell model)
A3 := 1:

# A4: Heat capacity coefficient  
A4 := 1:

# A5: Electrical conductivity coefficient (Maxwell model)
A5 := 1:
 

 

# Default parameter values (can be varied in studies)
M := 0:               # Magnetic field parameter
               # Unsteadiness parameter  
lambda_val := 0.5:      # Film thickness parameter (β²)
R := 0:               # Radiation parameter
A_star := 0.5:          # Heat source parameter
B_star := 0.5:          # Heat sink parameter
Ec := 0:              # Eckert number
Pr := 1:            # Prandtl number

OdeSys := A1 * diff(f(eta), eta, eta, eta) +
                     A2 * lambda_val * (f(eta) * diff(f(eta), eta, eta) -
                     diff(f(eta), eta)^2 - S * diff(f(eta), eta) -
                     (S * eta/2) * diff(f(eta), eta, eta)) -
                     M * A5 * diff(f(eta), eta) = 0,(A3 + (4/3)*R) * diff(theta(eta), eta, eta) -
                   Pr * A4 * lambda_val * ((S/2) * (3*theta(eta) + eta*diff(theta(eta), eta)) +
                   2*diff(f(eta), eta)*theta(eta) - f(eta)*diff(theta(eta), eta)) +
                   lambda_val * (B_star * theta(eta) + A_star * diff(f(eta), eta)) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+.5*f(eta)*(diff(diff(f(eta), eta), eta))-.5*(diff(f(eta), eta))^2-.5*S*(diff(f(eta), eta))-.2500000000*S*eta*(diff(diff(f(eta), eta), eta)) = 0, diff(diff(theta(eta), eta), eta)-.2500000000*S*(3*theta(eta)+eta*(diff(theta(eta), eta)))-1.0*(diff(f(eta), eta))*theta(eta)+.5*f(eta)*(diff(theta(eta), eta))+.25*theta(eta)+.25*(diff(f(eta), eta)) = 0

(1)

 

# Boundary conditions
    Cond :=f(0) = 0, D(f)(0) = 1, theta(0) = 1, f(1) = S/2,  D(theta)(1) = 0:
#(D(D(f)))(1) = 0:

SVals := [1, 1.2, 1.4, 1.6,1.8]:



for j to numelems(SVals) do
  
        Ans[j] := dsolve(eval([OdeSys, Cond], S = SVals[j]), numeric,
                         output = listprocedure):
end do:
       

interface(rtablesize = 100); interface(displayprecision = 6); Matrix([[Y, Nu, Nu, Nu, Nu, Nu], seq([k, seq([-(eval(diff(theta(eta), eta), Ans[j]))(k)][], j = 1 .. numelems(SVals))], k = 0)]); interface(rtablesize = 10); interface(displayprecision = -1)

Matrix(%id = 36893490264274272116)

(2)
 

 

Download thin_film_base_paper_comparision.mw
fin_base_paper.pdf

1 2 3 4 5 6 7 Page 1 of 7