Kitonum

21465 Reputation

26 Badges

17 years, 48 days

MaplePrimes Activity


These are answers submitted by Kitonum

Unfortunately Maple does not solve your equation in the general case. But it is easy to write a procedure that solves the equation   x^2+y^2 = z^2+t^2 = n   for any specified  n .  Here is the such procedure:

Sol := proc(n)

local S, L, k, i, j;

S := [isolve(x^2+y^2 = n)];

k := 0;

for i in S do

for j in S do

k := k+1; L[k] := [op(i), z = rhs(j[1]), t = rhs(j[2])]

end do end do;

L := convert(L, list);

if op(L)::symbol then return [] else L end if;

end proc:

 

Example of use:

S := Sol(1000):  nops(S);  seq(S[25*i], i = 1 .. 10);  # Total 256 solutions. Displayed  10  ones

 

 

restart;

combinat[permute]([0$4,1$4], 4):

L:=%[2..-1]:

P:=combinat[permute]([0$3,1$3], 3):

k:=0:

for l in L do

for p in P do

k:=k+1: M[k]:=[l,l*p[1],l*p[2],l*p[3]]:

od: od:

M:=convert(M, list):

S:={seq(seq([op(M[i,2..k-1]),M[i,1],op(M[i,k..4])], k=2..5), i=1..nops(M))}:  # Each matrix is defined as the list of lists

nops(S);

seq(Matrix(S[20*i]), i=1..10);  # As example 10 matrices from 225 ones

 

Edited. The code is optimized (removed unnecessary permutations)

Maybe you just want to bring your equation of order 2 to the canonical form? This is an imaginary ellipse:

eq:=25*(y1-3)^2+200+100*(x1-1)^2=0:

 (eq-200)/200;

                                               

 

 

solve(simplify(25*(y1-3)^2+200+100*(x1-1)^2=0, {(y1-3)^2+(x1-1)^2=a}), a);

                                            

 

 or

isolate(simplify(25*(y1-3)^2+200+100*(x1-1)^2=0, {(y1-3)^2+(x1-1)^2=a}), a);

eq:=diff(y(x), x)+4*y(x)^3-3*y(x)=0:

DEtools[DEplot](eq, y(x), x=-1 .. 0.1, y=-1 .. 0.1);

                           

 

 

1) For the numerical solution you must specify numerical values for all parameters  (C_d, rho, r, m, g )

2) I do not understand the notation  d2v_x . If this is the second derivative, then it should be written as  diff(v_x, t,t)  

Using this procedure, you can find the values of the unknown function at certain points and build its plot:

dy4:=diff(y(x),x):

eqn4:=dy4=sin(x*y(x)):

ic1:=y(0)=1:

ans3:=dsolve({eqn4,ic1}, y(x), numeric);

ans3(1);

plots[odeplot](ans3, [x,y(x)], x=0..10, thickness=2, numpoints=1000);

                                   

 

 

The example - all on the same plot:

 

A := plot3d(x^2-y^2, x = -1 .. 1, y = -1 .. 1, shading = zhue):

B := plot3d([1, y, z], y = -2 .. -3/2, z = -1 .. 1, shading = zhue):

plots[display](A, B, axes = frame, orientation = [40, 75], lightmodel=light4);

                       

 

 

map(simplify@sum, op(sum(a*u[k]+b*v[k], k=1..n)));

combine(%);

                            

 

 

restart;

f:=(x,y)->x*(x+y)*exp(y-x);

extrema(f(x,y), {}, {x,y}, `s`);

Points:=`s`;

Student[MultivariateCalculus][SecondDerivativeTest](f(x,y), [x,y]=[0,0]);

Student[MultivariateCalculus][SecondDerivativeTest](f(x,y), [x,y]=[1/2,-3/2]);

                               

 

 

You have forgotten  expand  f  in the Taylor series in the neighborhood  x=4. Should be

f := x^(6*ln(x));

Digits:=15;

taylor(f, x=4, 7);

T2 := convert(%, polynom);

f_value := evalf(subs(x = 5, T2));

Let   F(x,y,t,s) = K(x,y,t,s)*h_m(x)*h_n(y)*h_p(t)*h_q(s) . 

int(F(x,y,t,s), [x=0..1, y=0..1, t=0..1, s=0..1]);

                                       

 

 

Example:

Max:=-infinity:

S:=[2, -5, 4, 0, 4, 1]:

for s in S do

if  s>Max  then  Max:=s  fi;

od:

Max;

                                                        4

To find the positive roots of your equations, I first put them to the reduced form of quadratic equation, and then find the positive roots of these equations using well-known formula, taking the plus sign in front of the square root:

eq1 := 1.6*10^(-7)*R*sin(t)-4.4*10^(-14)*R^2*cos(t)*sin(t)-1.6*10^(-14)*R^2*cos(t)^2+4.2*10^(-14)*R^2-1.3+2.1*10^(-9)*R*cos(t) = 0:

eq2 := 8.3*10^(-8)*R*sin(t)-1.2*10^(-13)*R^2*cos(t)*sin(t)-2.9*10^(-44)*R^2*cos(t)^2+7.1*10^(-14)*R^2-1.3+8.3*10^(-8)*R*cos(t) = 0:

eq3 := 8.3*10^(-8)*R*sin(t)-1.2*10^(-13)*R^2*cos(t)*sin(t)-2.2*10^(-44)*R^2*cos(t)^2+7.1*10^(-14)*R^2-1.3+8.3*10^(-8)*R*cos(t) = 0:

eq4 := 2.1*10^(-9)*R*sin(t)-4.4*10^(-14)*R^2*cos(t)*sin(t)+1.6*10^(-14)*R^2*cos(t)^2+2.6*10^(-14)*R^2-1.3+1.6*10^(-7)*R*cos(t) = 0:

 

L := [eq1, eq2, eq3, eq4]:  # List of original equations

L1 := map(collect, map(t->t/coeff(lhs(t), R^2), L), R):   # List of reduced equations

Sol := map(t->-(1/2)*coeff(lhs(t), R)+sqrt((1/4)*coeff(lhs(t), R)^2-coeff(lhs(t), R, 0)), L1):   # List of positive roots of this equations  

A := plot(Sol, t = 0 .. 2*Pi, color = [blue, red, red, green], thickness = 3, coords = polar):  #  Required curves in polar coordinates

B := plot(min(op(Sol)), t = 0 .. 2*Pi, color = yellow, coords = polar, filled = true): # The intersection of the regions

plots[display](A, B);  # All together

                               

 

 Addition:   min(f(t), g(t))  -  the minimum function of  f(t)  and  g(t)

Obviously the equality  holds

x=<0.3603, 1.3279, 1.6882> = 0.3603*<1, 0, 1> + 1.3279*<0, 1, 1> 

 

From this equality it follows that  x  is in the rowspace  of the vectors  <1,0,1>  and  <0,1,1>

First 219 220 221 222 223 224 225 Last Page 221 of 290