Kitonum

21550 Reputation

26 Badges

17 years, 125 days

MaplePrimes Activity


These are answers submitted by Kitonum

Using this procedure, you can find the values of the unknown function at certain points and build its plot:

dy4:=diff(y(x),x):

eqn4:=dy4=sin(x*y(x)):

ic1:=y(0)=1:

ans3:=dsolve({eqn4,ic1}, y(x), numeric);

ans3(1);

plots[odeplot](ans3, [x,y(x)], x=0..10, thickness=2, numpoints=1000);

                                   

 

 

The example - all on the same plot:

 

A := plot3d(x^2-y^2, x = -1 .. 1, y = -1 .. 1, shading = zhue):

B := plot3d([1, y, z], y = -2 .. -3/2, z = -1 .. 1, shading = zhue):

plots[display](A, B, axes = frame, orientation = [40, 75], lightmodel=light4);

                       

 

 

map(simplify@sum, op(sum(a*u[k]+b*v[k], k=1..n)));

combine(%);

                            

 

 

restart;

f:=(x,y)->x*(x+y)*exp(y-x);

extrema(f(x,y), {}, {x,y}, `s`);

Points:=`s`;

Student[MultivariateCalculus][SecondDerivativeTest](f(x,y), [x,y]=[0,0]);

Student[MultivariateCalculus][SecondDerivativeTest](f(x,y), [x,y]=[1/2,-3/2]);

                               

 

 

You have forgotten  expand  f  in the Taylor series in the neighborhood  x=4. Should be

f := x^(6*ln(x));

Digits:=15;

taylor(f, x=4, 7);

T2 := convert(%, polynom);

f_value := evalf(subs(x = 5, T2));

Let   F(x,y,t,s) = K(x,y,t,s)*h_m(x)*h_n(y)*h_p(t)*h_q(s) . 

int(F(x,y,t,s), [x=0..1, y=0..1, t=0..1, s=0..1]);

                                       

 

 

Example:

Max:=-infinity:

S:=[2, -5, 4, 0, 4, 1]:

for s in S do

if  s>Max  then  Max:=s  fi;

od:

Max;

                                                        4

To find the positive roots of your equations, I first put them to the reduced form of quadratic equation, and then find the positive roots of these equations using well-known formula, taking the plus sign in front of the square root:

eq1 := 1.6*10^(-7)*R*sin(t)-4.4*10^(-14)*R^2*cos(t)*sin(t)-1.6*10^(-14)*R^2*cos(t)^2+4.2*10^(-14)*R^2-1.3+2.1*10^(-9)*R*cos(t) = 0:

eq2 := 8.3*10^(-8)*R*sin(t)-1.2*10^(-13)*R^2*cos(t)*sin(t)-2.9*10^(-44)*R^2*cos(t)^2+7.1*10^(-14)*R^2-1.3+8.3*10^(-8)*R*cos(t) = 0:

eq3 := 8.3*10^(-8)*R*sin(t)-1.2*10^(-13)*R^2*cos(t)*sin(t)-2.2*10^(-44)*R^2*cos(t)^2+7.1*10^(-14)*R^2-1.3+8.3*10^(-8)*R*cos(t) = 0:

eq4 := 2.1*10^(-9)*R*sin(t)-4.4*10^(-14)*R^2*cos(t)*sin(t)+1.6*10^(-14)*R^2*cos(t)^2+2.6*10^(-14)*R^2-1.3+1.6*10^(-7)*R*cos(t) = 0:

 

L := [eq1, eq2, eq3, eq4]:  # List of original equations

L1 := map(collect, map(t->t/coeff(lhs(t), R^2), L), R):   # List of reduced equations

Sol := map(t->-(1/2)*coeff(lhs(t), R)+sqrt((1/4)*coeff(lhs(t), R)^2-coeff(lhs(t), R, 0)), L1):   # List of positive roots of this equations  

A := plot(Sol, t = 0 .. 2*Pi, color = [blue, red, red, green], thickness = 3, coords = polar):  #  Required curves in polar coordinates

B := plot(min(op(Sol)), t = 0 .. 2*Pi, color = yellow, coords = polar, filled = true): # The intersection of the regions

plots[display](A, B);  # All together

                               

 

 Addition:   min(f(t), g(t))  -  the minimum function of  f(t)  and  g(t)

Obviously the equality  holds

x=<0.3603, 1.3279, 1.6882> = 0.3603*<1, 0, 1> + 1.3279*<0, 1, 1> 

 

From this equality it follows that  x  is in the rowspace  of the vectors  <1,0,1>  and  <0,1,1>

For the second and third graphics positive roots for any  t  almost are the same, so in the plot we see  not 4 but 3 graphics (blue graph covers the yellow graph):

eq1:=1.6*10^(-7)*R*sin(t)-4.4*10^(-14)*R^2*cos(t)*sin(t)-1.6*10^(-14)*R^2*cos(t)^2+4.2*10^(-14)*R^2-1.3+2.1*10^(-9)*R*cos(t)=0:

eq2:=8.3*10^(-8)*R*sin(t)-1.2*10^(-13)*R^2*cos(t)*sin(t)-2.9*10^(-44)*R^2*cos(t)^2+7.1*10^(-14)*R^2-1.3+8.3*10^(-8)*R*cos(t)=0:

eq3:=8.3*10^(-8)*R*sin(t)-1.2*10^(-13)*R^2*cos(t)*sin(t)-2.2*10^(-44)*R^2*cos(t)^2+7.1*10^(-14)*R^2-1.3+8.3*10^(-8)*R*cos(t)=0:

eq4:=2.1*10^(-9)*R*sin(t)-4.4*10^(-14)*R^2*cos(t)*sin(t)+1.6*10^(-14)*R^2*cos(t)^2+2.6*10^(-14)*R^2-1.3+1.6*10^(-7)*R*cos(t)=0:

L:=[eq1,eq2,eq3,eq4]:

L1:=map(collect,map(t->t/coeff(lhs(t),R^2), L),R):

plot(map(t->-coeff(lhs(t),R)/2+sqrt(coeff(lhs(t),R)^2/4-coeff(lhs(t),R,0)),L1), t=0..2*Pi, color=[red,blue,yellow,green], thickness=2);

                                  

 

 You can easily finish the remaining yourself.

restart;

S:=b*h^2/6: M:=10^7: fb:=M/S: fall:=2400: obj:=abs(fb-fall);

eval(obj, {b=10, h=50});  # Minimum

limit(eval(obj, {b=1/n,h=2/n}), n=infinity);  # Maximum

                               

 

 

This works:

a:=t^2;

f:=unapply(a, t);

                                     a := t^2

                                  f := t -> t^2

 

Example:

f(3);

                 9

Definition of the function and its plotting for  alpha=2:

f := (x, y, alpha)->piecewise((-(1/2)*Pi <= x and x < 0 or 0 < x and x <= (1/2)*Pi) and -abs(x) <= y and y <= abs(x), (x^2+y^2)^alpha*arcsin(y/x),  x = 0 and y = 0, 0,  undefined);

plot3d(f(x, y, 2), x = -3 .. 3, y = -3 .. 3, numpoints = 25000, style = surface, axes = normal, orientation = [30, 70]);

 

 

Changing  the number  alpha  you will receive a variety of functions and their graphs.

restart;

with(plots):

B := 1.5:

u2 := r*cos(th): v2 := r*sin(th):

w1 := u1+I*v1: w2 := u2+I*v2:

z1 := evalc(w1^2): z2 := evalc(w2^2):

x1 := evalc(Re(z1)): x2 := evalc(Re(z2)):

y1 := evalc(Im(z1)): y2 := evalc(Im(z2)):

f1 := proc (theta) options operator, arrow; plot3d([-x1, -y1, v1], u1 = -6 .. 1, v1 = -B .. B, grid = [50, 50], orientation = [theta, 80], color = u1) end proc:

f2 := proc (theta) options operator, arrow; plot3d([-x2, -y2, v2], r = 1 .. 1, th = -Pi .. Pi, grid = [50, 50], orientation = [theta, 80], color = black, thickness=2) end proc:

display(seq(display(f1(10*k), f2(10*k)), k = -17 .. 18), insequence = true, axes = box, view = [-1 .. 1, -1 .. 1, -B .. B]);

 

 

 

eq:=diff(x(t),t,t) - 3*diff(x(t),t) + 2*x(t) = 2*t -3;

inc:=x(0)=2, D(x)(0)=4;

dsolve({eq, inc});

First 220 221 222 223 224 225 226 Last Page 222 of 290