SSMB

100 Reputation

4 Badges

0 years, 148 days

MaplePrimes Activity


These are questions asked by SSMB

in here How we can seperate the coefficent of conjugate this conjugate sign how remove from my equation ?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi)); declare(P(x, t)); declare(q(x, t))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

 

P(x, t)*`will now be displayed as`*P

 

q(x, t)*`will now be displayed as`*q

(2)

pde := I*(diff(u(x, t), t))+diff(u(x, t), `$`(x, 2))+abs(u(x, t))^2*u(x, t) = 0

I*(diff(u(x, t), t))+diff(diff(u(x, t), x), x)+abs(u(x, t))^2*u(x, t) = 0

(3)

S := u(x, t) = (sqrt(a)+P(x, t))*exp(I*a*t)

u(x, t) = (a^(1/2)+P(x, t))*exp(I*a*t)

(4)

S1 := conjugate(u(x, t)) = (sqrt(a)+conjugate(P(x, t)))*exp(-I*a*t)

conjugate(u(x, t)) = (a^(1/2)+conjugate(P(x, t)))*exp(-I*a*t)

(5)

Q := abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

(6)

F1 := expand(simplify(subs({S, S1}, rhs(Q))))

a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))+abs(P(x, t))^2

(7)

F2 := abs(u(x, t))^2 = remove(has, F1, abs(P(x, t))^2)

abs(u(x, t))^2 = a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))

(8)

FF := collect(F2, sqrt(a))

abs(u(x, t))^2 = a+(P(x, t)+conjugate(P(x, t)))*a^(1/2)

(9)

F3 := abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*sqrt(a))*rhs(S)

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(10)

F4 := remove(has, F3, P(x, t)*conjugate(P(x, t)))

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(11)

expand(%)

abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(12)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, P(x, t) = T*P(x, t)))/T, T) end proc, expand(%))

() = (), abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(13)

F6 := abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a*conjugate(P(x, t))

abs(u(x, t))^2*u(x, t) = exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t))

(14)

subs({F6, S}, pde)

I*(diff((a^(1/2)+P(x, t))*exp(a*t*I), t))+diff(diff((a^(1/2)+P(x, t))*exp(a*t*I), x), x)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(15)

eval(%)

I*((diff(P(x, t), t))*exp(a*t*I)+I*(a^(1/2)+P(x, t))*a*exp(a*t*I))+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(16)

expand(%)

I*(diff(P(x, t), t))*exp(a*t*I)+exp(a*t*I)*a*P(x, t)+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(17)

expand(%/exp(I*a*t))

I*(diff(P(x, t), t))+a*P(x, t)+diff(diff(P(x, t), x), x)+a*conjugate(P(x, t)) = 0

(18)

PP := collect(%, a)

(P(x, t)+conjugate(P(x, t)))*a+I*(diff(P(x, t), t))+diff(diff(P(x, t), x), x) = 0

(19)

U1 := P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

(20)

eval(subs(U1, PP))

(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0

(21)

simplify((r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(22)

J := eval(%)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(23)

expand(%)

a*conjugate(r[1])*exp(I*conjugate(m)*conjugate(t))/exp(I*conjugate(l)*conjugate(x))+a*conjugate(r[2])*exp(I*conjugate(l)*conjugate(x))/exp(I*conjugate(m)*conjugate(t))-r[2]*exp(I*m*t)*l^2/exp(I*l*x)+r[2]*exp(I*m*t)*a/exp(I*l*x)-r[2]*exp(I*m*t)*m/exp(I*l*x)-r[1]*exp(I*l*x)*l^2/exp(I*m*t)+r[1]*exp(I*l*x)*a/exp(I*m*t)+r[1]*exp(I*l*x)*m/exp(I*m*t) = 0

(24)

indets(%)

{a, l, m, t, x, r[1], r[2], exp(I*l*x), exp(I*m*t), exp(I*conjugate(l)*conjugate(x)), exp(I*conjugate(m)*conjugate(t)), conjugate(l), conjugate(m), conjugate(t), conjugate(x), conjugate(r[1]), conjugate(r[2])}

(25)

subs({exp(-I*(l*x-m*t)) = Y, exp(I*(l*x-m*t)) = X}, J)

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(26)

collect(%, {X, Y})

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(27)

Download conjugate.mw

this function i have is so long and my parameter are twenty they are two much when i make a change in explore i the change is so slow and i can't see some of this parameter how act to figure when i change becuase the placement of parameters i want some of parameter being in right  and some of them being in right  and figure be in the middle for see them together can we do something like that?

figure.mw

i want to to get the eq(14) but i need to do some Hard replacing which i am unfamiliar with it any one can help ?

restart;

 

f :=  1 + exp(eta[1]) + b[1, 2]*exp(eta[1] + eta[2]) + exp(eta[2]) + b[2, 3]*exp(eta[2] + eta[3]) + b[1, 2]*b[1, 3]*b[2, 3]*exp(eta[1] + eta[2] + eta[3]) + b[1, 3]*exp(eta[1] + eta[3]) + exp(eta[3])

1+exp(eta[1])+b[1, 2]*exp(eta[1]+eta[2])+exp(eta[2])+b[2, 3]*exp(eta[2]+eta[3])+b[1, 2]*b[1, 3]*b[2, 3]*exp(eta[1]+eta[2]+eta[3])+b[1, 3]*exp(eta[1]+eta[3])+exp(eta[3])

(1)

NULL

C :=(i,j)->6*l[j]*l[i]*(l[i] + l[j])/((l[i] - l[j])^2*beta)

proc (i, j) options operator, arrow; 6*l[j]*l[i]*(l[i]+l[j])/((l[i]-l[j])^2*beta) end proc

(2)

NULL

etai := k[i]*(t*w[i]+y*l[i]+x)+eta[i]

k[i]*(t*w[i]+y*l[i]+x)+eta[i]

(3)

theta[i] := t*w[i]+y*l[i]+x

t*w[i]+y*l[i]+x

(4)

eqw := w[i] = -(alpha*l[i]+beta)/l[i]

w[i] = -(alpha*l[i]+beta)/l[i]

(5)

theta[1] := normal(eval(eval(theta[i], eqw), i = 1)); theta[2] := normal(eval(eval(theta[i], eqw), i = 2))

-(alpha*t*l[1]-y*l[1]^2+beta*t-x*l[1])/l[1]

 

-(alpha*t*l[2]-y*l[2]^2+beta*t-x*l[2])/l[2]

(6)

fix:=proc(F)
   local i,j;
   i:=op(1,F); j:=op(2,F);
   if i<j then
      C(i,j);
   else
      F;
   fi;
end proc:

evalindets(f,b[anything,anything],F->fix(F));

1+exp(eta[1])+6*l[2]*l[1]*(l[1]+l[2])*exp(eta[1]+eta[2])/((l[1]-l[2])^2*beta)+exp(eta[2])+6*l[3]*l[2]*(l[2]+l[3])*exp(eta[2]+eta[3])/((l[2]-l[3])^2*beta)+216*l[2]^2*l[1]^2*(l[1]+l[2])*l[3]^2*(l[1]+l[3])*(l[2]+l[3])*exp(eta[1]+eta[2]+eta[3])/((l[1]-l[2])^2*beta^3*(l[1]-l[3])^2*(l[2]-l[3])^2)+6*l[3]*l[1]*(l[1]+l[3])*exp(eta[1]+eta[3])/((l[1]-l[3])^2*beta)+exp(eta[3])

(7)

simplify(%);

1+exp(eta[1])+b[1, 2]*exp(eta[1]+eta[2])+exp(eta[2])+b[2, 3]*exp(eta[2]+eta[3])+b[1, 2]*b[1, 3]*b[2, 3]*exp(eta[1]+eta[2]+eta[3])+b[1, 3]*exp(eta[1]+eta[3])+exp(eta[3])

(8)
 

 

Download get_result.mw

i want try all number to my parameter for check the shape of plot there is any way for doing that?

restart

with(plots)

M := 4*b^2*beta*((a*y-2*alpha*t+x)*b^2+a*(-2*beta*t+a*(a*y-2*alpha*t+x)))/(-b^6*beta*y^2+(-4*t*y*beta^2+(-2*a^2*y^2+(4*(alpha*t-(1/2)*x))*y*a-4*(alpha*t-(1/2)*x)^2)*beta+3*a)*b^4+(-4*t^2*beta^3+4*a*t*(a*y-2*alpha*t+x)*beta^2-a^2*(a*y-2*alpha*t+x)^2*beta+6*a^3)*b^2+3*a^5)

alpha = 1; beta := 1; a := -1; b := -2; t := 0

alpha = 1

 

1

 

-1

 

-2

 

0

(1)

plots:-contourplot(M, x = -100 .. 100, y = -100 .. 100, title = contour, grid = [100, 100], colorbar = false)

 
 

NULL

Download control-trajectory.mw

Page 1 of 1