nicholas-m

5 Reputation

One Badge

11 years, 280 days

MaplePrimes Activity


These are replies submitted by nicholas-m

@Carl Love 

 

Thanks for your suggestion.

 

I tried it for the model I am developing but it gives me some errors.  Ses uploaded file.

The R(λ) and RR(λ) should be real since they are modulus^2 and ()*(complex conjugate).

Any suggestions?  I must be doing something wrong.

 

Thanks.

 

NULL

`λo` = 1550:

N := 10:

NULL

L := N*`λo`

NULL

R1 := .9:

R2 := .9:

 

 

  delta1 := arccos(sqrt(R1)) = .3217505542

  delta2 := arccos(sqrt(R2)) = .3217505542NULL

r1 := -I*cos(delta1) = -.9486832981*INULL

t1 := I*sin(delta1) = .3162277658*INULL

r2 := -I*cos(delta2) = -.9486832981*INULL

t2 := I*sin(delta2) = .3162277658*INULL

r1p := r1 = -.9486832981*INULL

t1p := -t1 = -.3162277658*INULL

NULL

NULL

NULL

R := proc (lambda) options operator, arrow; proc (lambda) options operator, arrow; (r1+t1p*r2*t1*exp(-(2*I)*Pi*L/lambda)/(1-r1p*r2*exp(-(4*I)*Pi*L/lambda)))^2 end proc end proc

proc (lambda) options operator, arrow; proc (lambda) options operator, arrow; (r1+t1p*r2*t1*exp(-(2*I)*Pi*L/lambda)/(1-r1p*r2*exp(-(4*I)*Pi*L/lambda)))^2 end proc end proc

(1)

``

evalc(R(lambda))

proc (lambda) options operator, arrow; (r1+t1p*r2*t1*exp(-(2*I)*Pi*L/lambda)/(1-r1p*r2*exp(-(4*I)*Pi*L/lambda)))^2 end proc

(2)

``

plot(R(lambda), 1 .. 1600, -3 .. 3)

 

RR := proc (lambda) options operator, arrow; proc (lambda) options operator, arrow; (r1+t1p*r2*t1*exp(-(2*I)*Pi*L/lambda)/(1-r1p*r2*exp(-(4*I)*Pi*L/lambda)))(conjugate(r1+t1p*r2*t1*exp(-(2*I)*Pi*L/lambda)/(1-r1p*r2*exp(-(4*I)*Pi*L/lambda)))) end proc end proc

proc (lambda) options operator, arrow; proc (lambda) options operator, arrow; (r1+t1p*r2*t1*exp(-(2*I)*Pi*L/lambda)/(1-r1p*r2*exp(-(4*I)*Pi*L/lambda)))(conjugate(r1+t1p*r2*t1*exp(-(2*I)*Pi*L/lambda)/(1-r1p*r2*exp(-(4*I)*Pi*L/lambda)))) end proc end proc

(3)

plot(RR(lambda), 1 .. 1600, -3 .. 3)

 

``


Download test2.mwtest2.mw

Page 1 of 1