Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

I assigned

before an algebraic calculation so I would like to get  or have the program print the 70 digits of the answer and not just 10 digits. Because when I press ENTER, I get only 10 digits.

 

I am trying to implement Subresultant p.r.s. algorithm for calculating greatest common divisor. The algorithm decribed in the book:

My code return the correct GCD, however the sub-resultant terms are different from the result of the built-in function. The last term a[i-1] is huge and involves fractions. I think my implementation is same as the algorithm described in the textbook.

I have attached the file. Could anybody spot anything wrong in the code? Why do fractions still appear? In my code, "lsr" is last subresultant term returned from the built-in function, the second one is my result.

with(RegularChains);

[Chain, ChangeOfOrder, Construct, Cut, DahanSchostTransform, Dimension, Empty, EqualSaturatedIdeals, EquiprojectableDecomposition, Extend, ExtendedNormalizedGcd, IsAlgebraic, IsEmptyChain, IsInRadical, IsInSaturate, IsIncluded, IsPrimitive, IsStronglyNormalized, IsZeroDimensional, IteratedResultant, LastSubresultant, Lift, ListConstruct, NormalizeRegularChain, NumberOfSolutions, Polynomial, Regularize, RemoveRedundantComponents, SeparateSolutions, Squarefree, SquarefreeFactorization, SubresultantChain, SubresultantOfIndex, Under, Upper]

(1)

A42vlastsub := proc (f, g) local i, a, dt, bt, om; i := 1; if degree(f) < degree(g) then a[0] := primpart(g, x); a[1] := primpart(f, x) else a[0] := primpart(f, x); a[1] := primpart(g, x) end if; dt[0] := degree(a[0])-degree(a[1]); bt[2] := (-1)^(dt[0]+1); om[2] := -1; while a[i] <> 0 do a[i+1] := normal(prem(a[i-1], a[i], x)/bt[i+1]); dt[i] := degree(a[i])-degree(a[i+1]); i := i+1; om[i+1] := (-lcoeff(a[i-1]))^dt[i-2]*om[i]^(1-dt[i-2]); bt[i+1] := -lcoeff(a[i-1])*om[i+1]^dt[i-1] end do; return a[i-1] end proc;

 

(2)

f := (y^2-1)*((y+1)*x^4+(y^2-1)*x^3+(y^3-1)*x^2+(y^4-1)*x+y^5-1);

(y-1)*x^5+(y^2-1)*x^4+(y^3-1)*x^3+(y^4-1)*x^2+(y^5-1)*x+y^6-1

(3)

R := RegularChains:-PolynomialRing([y, x]);

subresultant_chain

(4)

lsr := LastSubresultant(src, R);

y^25+y^24+2*y^23+4*y^22+8*y^21+16*y^20+46*y^19+160*y^18+402*y^17+808*y^16+1384*y^15+2080*y^14+2932*y^13+3762*y^12+4406*y^11+4740*y^10+4720*y^9+4400*y^8+3810*y^7+2968*y^6+2102*y^5+1360*y^4+800*y^3+400*y^2+139*y+21

(5)

``

mylastsr := A42vlastsub(primpart(f, x), primpart(g, x));

-(35867/3794275180128377091639574036764685364535950857523710002444946112771297432041422848)*y^9-(10309/7588550360256754183279148073529370729071901715047420004889892225542594864082845696)*y^8-(2889061/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^10-(94304133/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^13-(35600337/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^12-(11265153/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^11-(4325932673/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^21-(3534515779/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^20-(2703789263/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^19-(1929251163/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^18-(1277273509/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^17-(778538921/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^16-(432069123/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^15-(215109057/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^14-(5255652033/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^25-(5374732281/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^23-(5474736805/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^24-(4971065401/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^22-(475/3794275180128377091639574036764685364535950857523710002444946112771297432041422848)*y^7-(21/3794275180128377091639574036764685364535950857523710002444946112771297432041422848)*y^6-(332387607/30354201441027016733116592294117482916287606860189680019559568902170379456331382784)*y^32-(1/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^49-(23/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^48-(251/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^47-(1735/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^46-(8571/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^45-(32463/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^44-(99205/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^43-(255999/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^42-(586005/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^41-(1263605/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^40-(2747253/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^39-(6322305/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^38-(15325169/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^37-(37286331/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^36-(86630947/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^35-(186556683/60708402882054033466233184588234965832575213720379360039119137804340758912662765568)*y^34-(92016457/15177100720513508366558296147058741458143803430094840009779784451085189728165691392)*y^33-(275974877/15177100720513508366558296147058741458143803430094840009779784451085189728165691392)*y^31-(847698927/30354201441027016733116592294117482916287606860189680019559568902170379456331382784)*y^30-(1210953247/30354201441027016733116592294117482916287606860189680019559568902170379456331382784)*y^29-(1616246617/30354201441027016733116592294117482916287606860189680019559568902170379456331382784)*y^28-(505494959/7588550360256754183279148073529370729071901715047420004889892225542594864082845696)*y^27-(2376326883/30354201441027016733116592294117482916287606860189680019559568902170379456331382784)*y^26

(6)

``


 

Download subresultant.mw

I resolved the coefficients to a 2nd order diff eq of the form:ay''+by'+cy=f(t)

I have included the .mw file for convenience at the link at the bottom of the page.  I resolved the coefficients in 2 different ways & they do not concur.  The 1st approach used the LaPlace transform & partial fraction decomposition.  The coefficient results are given by equations # 14 & 15.  The 2nd approach used undetermined coefficients where I assumed the particular solution and then applied the initial conditions to resolve the coefficients pertaining to the homogeneous solution which are given in the results listed in equation #23.  Noted in the 1st case the coeff's are A3 & A4 and for the 2nd approach the coeff's are A1 & A2.  I have worked this numerous times & do not understand why they do not concur.  So I thought I should get some fresh eyes on the problem to find where I may have gone wrong.

Any new perspective will be greatly apprecieated.

I had trouble uploading the .mw file so I have included an alternative link to retrieve the file if the code contents is illegible or you cannot dowlad the file drectly from the weblink  Download coeffs_of_homogen_soln_discrepancy.mw.  You should be able to download from the alternative link below once you paste the link into your browser.  If you cannot & wish for me to provide the file in some other fashion respond with some specific instructions & I will attempt to get the file to you.

https://unl.box.com/s/dywe90wwpy0t4ilkuxshkivz2z26mud8

Thanks 4 any help you can provide.

Download coeffs_of_homogen_soln_discrepancy.mw

Dear all,

I'm investigating the vibration performance of timber beams. I have sample data from my test which shows the vibration of the beam. I want to determine the eigenfrequency from this data. The problem I face is that I'm not finding the probber eigenfrequency. I have two data rows; time and amplitude. I'm able to plot the amplitude with SignalPlot but not the time, therefore I have to adjust the samplerate. I have the same problem with the fourier analysis. Is it possible to include the time period as well?

Regards,

 

Maurits

 

Dear all,

I need to transforme these equation from time domain to frequency domain with fourier transforms and solve it in frequency domain but i received the flowing error

any helps

thank you !

 

``

restart:with(inttrans):

E:=1;L:=1;

1

 

1

(1)

 

equ := arccos(y(t)/R)*R*L*(diff(y(t), `$`(t, 1)))*abs(diff(y(t), `$`(t, 1)))+diff(y(t), `$`(t, 2))+m*sin(omega*t+k*R*sin(`&theta;l`))+arccos(y(t)/R);

arccos(y(t)/R)*R*(diff(y(t), t))*abs(diff(y(t), t))+diff(diff(y(t), t), t)+m*sin(omega*t+k*R*sin(`&theta;l`))+arccos(y(t)/R)

(2)

eq:=fourier(equ,t,omega);

((1/2)*I)*m*fourier(exp(-I*omega*t), t, omega)*exp(-(1/2)*k*R*exp(I*`&theta;l`)+(1/2)*k*R*exp(-I*`&theta;l`))-omega^2*fourier(y(t), t, omega)-((1/2)*I)*m*fourier(exp(I*omega*t), t, omega)*exp((1/2)*k*R*exp(I*`&theta;l`)-(1/2)*k*R*exp(-I*`&theta;l`))+R*fourier(arccos(y(t)/R)*(diff(y(t), t))*abs(diff(y(t), t)), t, omega)+fourier(arccos(y(t)/R), t, omega)

(3)

csi := y(0) = 0.2e-1, (D(y))(0) = 0;

y(0) = 0.2e-1, (D(y))(0) = 0

(4)

sol := dsolve({csi, eq}, numeric, maxfun = 1000000000)

Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)

 

Error, (in solve) cannot solve expressions with fourier(arccos(Y[1]/R)*YP[1]*abs(YP[1]), t, omega) for YP[1]

 

Code :

Download Fourier_TRAns_MAPLEprime.mwFourier_TRAns_MAPLEprime.mw

Hi, I'm trying to use Maple to construct some examples of symmetry solutions for certain nonlinear PDE's.  As a warm up, however, I'm working through the commands just for the heat equation in 3d: u[t]-u[x,x]-u[y,y]-u[z,z]=0 

I've gotten Maple to produce both determining equations for the symmetry infinitesimal generators via the DeterminingPDE command.  I've also gotten the command Infinitesimals to work too.

However, when I next use PDETools Invariants command, it correctly outputs invariants for most of the generator output of Infinitesimals EXCEPT it won't output anything for the simple rotation generators yd[x]-xd[y].  It will, however, output invariants if the rotation is between an independent and the dependent coordinate.

An example:
with(PDETools)
S:=[_xi[x]=y, _xi[y]=-x, _eta[u]=0]
Invariants(S,u(x,y))

*Above returns nothing, But if you instead have _xi[x]=x and _xi[y]=y then it returns the right invariants.

Thanks in advance!

Hey, this is not the I've had this encounter. I want to open this saved document but when I open it and Maple starts up it just hits me with "A problem was encountered while opening the workbook. Database is not opened". How can I get to open it properly and see my math notes?

How can this be prevented?

When I try to upload the file in this message it says "Cant open a null file"

Any help?

 

Jacob

 

plz code and sole that this integral!!!!!!!!!!

!!!

Hi, so I have few problems here. I need to;

Create a MxN Matrix/Lattice, where N and M can be any positive integer, that contains a random selection of -1/1s at each entry.

Need to sum every entry, then multiply by -1 to find “H”.

Need to multiply each neighbour to find its bond energy, so if it’s the same you get 1 else -1, but only its direct neighbours once, so if it was a 2x2 matrix there would be only 4 values and then sum them.

I don’t seem to be able to set up the code so that it does it for any size matrix, as I only know how to write it out basic for a 2x2. Also, not so important, but I wanted to know if could create a loop that would find every iteration of possible setups i.e. for a 2x1 you can have 1.1, -1.1, 1.-1, -1.-1. And then give the solutions outlined earlier for each of the the possibilities [There being 2MxN ]

Cheers in advance.

In response to Markiyan Hirnyks reference to Mathematica's FindDistribution command http://www.mapleprimes.com/questions/219668-Determine-The-Distribution-Function.  It would be nice to have something similar coded in Maple. 

solve Derivative in maple

see in photo

 

What do people find a good screen size is? 

Personally I find two monitors would be ideal for using Maple and especially Maplesim.  I'm going to be adding a second monitor, probably a 20".  Maybe 24" is better?  I think 20" would be enough.  Just wondering how many monitors people out there work with and their monitor sizes.

Dear all

I have n, p two integers greater than one

I would like to minimize the following real number by a fixed positive constant if its possible

(n/(n+p))^(n/p)-(n/(n+p))^((n+p)/p)

Many thanks

Dear all,

I am creating an animation, and I was wondering if I can add a multiplier to my equation in a specific range.  So starting from z:=0.2 add a multiplier (z+1). The code I have so far is added. Does anyone know a code for this?

Kind regards

restart; 
with(plots); 
a := -1/2; b := 1/2; c := -2; d := 2; n := 20; 
g := proc (x) options operator, arrow; value(Int(sigma(t), t = 0 .. x)) end proc; 
sigma := proc (z) options operator, arrow; 2*sqrt(2*h^2-4*z^2)*z/h^2 end proc; 
h := i/n; 
for i to n do 
an2[i] := plot(sigma(z), z = -(1/2)*h .. (1/2)*h, view = [a .. b, c .. d], color = AQUAMARINE); 
an3[i] := plot(2*g(x), x = 0 .. (1/2)*h, view = [a .. b, c .. d], color = RED) 
end do; 
p := plots[display]([seq(an2[i], i = 1 .. n)], insequence = true); 
q := plots[display]([seq(an3[i], i = 1 .. n)], insequence = true); display(p, q)

 


equation 1 : xi+1=xi− (f·gy−fy·g)/(fx ·gy −fy ·gx)
equation 2: yi+1=yi− (fx·g−f·gx)/(fx·gy-fy·gx)

My quesiton are, deriving equations (1) and (2) above and constructing a single Maple function called newt2d that implements both of these recurrence relation.

I apolgize in advance if I don't write my question correctly.  This is my first time posting a question. 

First 178 179 180 181 182 183 184 Last Page 180 of 365