Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

 

With the following equation

eqn:=y=1/2+(1/2)*erf((1/2)*sqrt(2)*(x-mu)/sigma)-exp(-lambda*(x-mu)+(1/2)*lambda^2*sigma^2+ln(1/2-(1/2)*erf((1/2)*sqrt(2)*(lambda^2*sigma^2-lambda*(x-mu))/(lambda*sigma))));

and with

x:=solve(eqn,x) assuming sigma > 0, lambda > 0;

I got the following solution

x := -(1/2)*(-lambda^2*sigma^2-2*lambda*mu+2*RootOf(-exp(_Z)*erf((1/4)*sqrt(2)*(lambda^2*sigma^2+2*_Z)/(lambda*sigma))+exp(_Z)+erf((1/4)*sqrt(2)*(-lambda^2*sigma^2+2*_Z)/(lambda*sigma))+2*y-1))/lambda;

In order to get rid of RootOf I gave the command:

allvalues(%);

However, RootOf did not disappear. How should I proceed? 

 

hi

if possible to convert matlab file in to maple fie program??convert_to_maple_program.txt

thanks

 

this is the matlab is it possible to rewrite it in simple maple code

J = rand()+1e-10;

function [M, num, E] = ising(N,J)

B = 0;

M = []; % The total magnetic field of the system

E = []; % The total energy of the system

randTol = 0.1; % The tolerance, dampens the spin flip process

% First we generate a random initial configuration

spin = (-1).^(round(rand(N)));

% Then we let the system evolve for a fixed number of steps

for i=1:1000,

% Calculating the total spin of neighbouring cells

neighbours = circshift(spin, [ 0 1]) + ...

circshift(spin, [ 0 -1]) + ...

circshift(spin, [ 1 0]) + ...

circshift(spin, [-1 0]);

% Calculate the change in energy of flipping a spin

DeltaE = 2 * (J*(spin .* neighbours) + B*spin);

% Calculate the transition probabilities

p_trans = exp(-DeltaE);

% Decide which transitions will occur

transitions = (rand(N) < p_trans ).*(rand(N) < randTol) * -2 + 1;

% Perform the transitions

spin = spin .* transitions;

% Sum up our variables of interest

M = sum(sum(spin));

E = -sum(sum(DeltaE))/2; % Divide by two because of double counting

% Display the current state of the system (optional)

image((spin+1)*128);

xlabel(sprintf('J = %0.2f, M = %0.2f, E = %0.2f', J, M/N^2, E/N^2));

set(gca,'YTickLabel',[],'XTickLabel',[]);

axis square; colormap bone; drawnow;

end

% Count the number of clusters of 'spin up' states

[L, num] = bwlabel(spin == 1, 4);

############################# 

hi.please help me for remove error'' 

Error, illegal use of an object as a name''

 

thanks

PLATE.mw

   

Parse:-ConvertTo1D, "first argument to _Inert_ASSIGN must be assignable"

Error, illegal use of an object as a name

"restart:Digits :=15: beta:=10:alpha:=100: xi:=.5: upsilon:=0.2841945289:n:=3: aa:=1:b:=1:N_x:=0.4:N_y:=0.4:N_xy:=0: hl2:=1:mu:=65.8e9:E:=169e9: delta0:=1:delta1:=1: mus:=3:D1:=2;h:=1: lambda:=0.1: D2:=5:A1:=-2:A2:=-2:A3:=-6:A4:=7:A5:=7:A6:=7:A7:=7:A8:=8:A9:=7:A10:=7:A11:=1: A12:=1:tau:=4.730040745:t:=0: g2:=sin(theta):g3:=cos(theta):g1:=cos(theta):a:=0.0:with(Student[Calculus1]): a1:=evalf((A1*ApproximateInt(g3^2,theta=a..1,method=simpson)  ) ) : a2:= evalf(A2*ApproximateInt(g3*((&DifferentialD;)^2)/((&DifferentialD;theta)^2)g3,theta=a..1,method=simpson)): a3:=evalf(A3*ApproximateInt(g3*g3,theta=a..1,method=simpson)) : a4:=evalf(A4*ApproximateInt(g3*g3,theta=a..1,method=simpson)) :a5:=evalf(A5*ApproximateInt(g3^2,theta=a..1,method=simpson)) : a6:=evalf(A6*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;theta)^2)g3*g3,theta=a..1,method=simpson)) :a7:=evalf(A7*ApproximateInt(g3*g3,theta=a..1,method=simpson)): a8:=evalf(A8*ApproximateInt(g3^2,theta=a..1,method=simpson)):a9:=evalf(ApproximateInt(A9*(g3*g3 )     ,theta=a..1,method=simpson)) :a10:=evalf(A10*ApproximateInt(g3*g3,theta=a..1,method=simpson)):a11:=evalf(ApproximateInt(1,theta=a..1,method=simpson)):a12:=evalf(ApproximateInt(1*(1-1/2 (1)),theta=a..1,method=simpson)):dsys3 := { f3(x)*(a1)+ f3(x)*(a2)  +((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x)*(a3) +f3(x)*a4+ f3(x)*(a5) +((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x)*(a6) +f3(x)*a7= ((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x) *(a8)   + a9*(&DifferentialD;)/(&DifferentialD;x) f3(x) +f3(x)*a10+ a11+a12  , f3(1) =0,f3(0) =0 , D^(1)(f3)(1) = 0, D^(1)(f3)(0)=0,D^(3)(f3)(1) = 0, D^(3)(f3)(0)=0}    :dsol5 := dsolve(dsys3, 'maxmesh'=2024, numeric,abserr=.0001, range=0..1, output=listprocedure):fy3:= eval(f3(x),dsol5):with(CurveFitting):fy33:=PolynomialInterpolation([[0,fy3(0)],[.1,fy3(0.1)],[.2,fy3(0.2)],[0.3,fy3(0.3)],[.4,fy3(0.4)],[.5,fy3(0.5)],[0.6,fy3(0.6)],[0.7,fy3(0.7)],[0.8,fy3(0.8)],[0.9,fy3(0.9)],[1,fy3(1)]],x): d1:=A1*ApproximateInt(((&DifferentialD;)^6)/((&DifferentialD;x)^6)fy33*fy33,x=a..1,method=simpson)   :d2:= A2*ApproximateInt(((&DifferentialD;)^4)/((&DifferentialD;x)^4)fy33*fy33 ,x=a..1,method=simpson)   :d3:=A3*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson): d4:= A4*ApproximateInt(fy33*fy33,x=a..1,method=simpson):d5:=A5*ApproximateInt(((&DifferentialD;)^4)/((&DifferentialD;x)^4)fy33*fy33,x=a..1,method=simpson)  : d6:=A6*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson)    :d7:=A7*ApproximateInt(fy33*fy33,x=a..1,method=simpson)  :d8:=A8*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson)      :d9:=ApproximateInt(A9*(((&DifferentialD;)^1)/((&DifferentialD;x)^1)fy33*fy33 )   ,x=a..1,method=simpson) :d10:=A10*ApproximateInt(fy33*fy33,x=a..1,method=simpson)    :d11:=evalf(ApproximateInt(1,theta=a..1,method=simpson)):d12:=evalf(ApproximateInt(1*(1-1/2 (1)),theta=a..1,method=simpson))  : d sys4 := { h3(theta)*(d1)+((&DifferentialD;)^2)/((&DifferentialD;theta)^2) h3(theta)*(d2)+((&DifferentialD;)^4)/((&DifferentialD;theta)^4) h3(theta)*(d3)+ ((&DifferentialD;)^6)/((&DifferentialD;theta)^6) h3(theta)*(d4)+h3(theta) *(d5)+ h3(theta) *(d6) +((&DifferentialD;)^4)/((&DifferentialD;theta)^4) h3(theta)*(d7)= h3(theta)*(d8)  +d9*(&DifferentialD;)/(&DifferentialD;theta) h3(theta)  +((&DifferentialD;)^2)/((&DifferentialD;theta)^2) h3(theta)*(d10)  +d11+d12   ,h3(1) = 0,h3(0) = 0 , D^(1)(h3)(1) = 0, D^(1)(h3)(0)=0,D^(3)(h3)(1) = 0, D^(3)(h3)(0)=0}  :dsol6 := dsolve(dsys4, 'maxmesh'=2024, abserr=.0001, range=0..1, numeric, output=listprocedure):g33:= eval(h3(theta),dsol6):with(CurveFitting):g3:=PolynomialInterpolation([[0,g33(0)],[.1,g33(0.1)],[.2,g33(0.2)],[0.3,g33(0.3)],[.4,g33(0.4)],[.5,g33(0.5)],[0.6,g33(0.6)],[0.7,g33(0.7)],[0.8,g33(0.8)],[0.9,g33(0.9)],[1,g33(1)]],theta):"

 

 

``

 

Download PLATE.mw

Hi

Hope a nice day for all

restart;

#  *%   define the product of between two operators, and q real number
a*%b = q*b*%a+1;

# First I would like to give a simple for

 a^n*%b;
# and                                    
a*%b^n;

them deduce a general for                                      

b^n*%a^k*%b^N*%a^K-q^(k*N-n*K)*b^N*%a^K*%b^n*%a^k;

 where n, k and k greater than 1 and  n geater than k

Simplification.mw

 

Thanks for your help


 


How can i over come convergence error, i am unable to apply approxsoln appropriately and continouation as well. regards

N := 5;

-(1/2)*Pr*n*x*(diff(f(x), x))*(diff(theta(x), x))-(1/2)*Pr*(n+1)*f(x)*(diff(theta(x), x))-(1/2)*(n+1)*(diff(diff(theta(x), x), x))+Pr*gamma*((1/4)*(n^2-3*n+3)*x^2*(diff(f(x), x))*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/4)*(2*n^2+5*n+3)*f(x)*(diff(f(x), x))*(diff(theta(x), x))+(1/4)*n(n+1)*x*f(x)*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/4)*(2*n^2+3*n-3)*x*(diff(f(x), x))^2*(diff(theta(x), x))+(1/4)*(n-1)*x^2*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/2)*n*(n+1)*x*f(x)*(diff(f(x), x))*(diff(diff(theta(x), x), x))+(1/4)*(n^2-1)*(diff(f(x), x))^2*(diff(theta(x), x))+(1/4)*(n+1)^2*f(x)^2*(diff(diff(theta(x), x), x))+(1/4)*(n-1)^2*x^2*(diff(f(x), x))^2*(diff(diff(theta(x), x), x))) = 0

(1)

bc := (D(theta))(0) = -Bi*(1-theta(0)), theta(N) = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(N) = 1;

(D(theta))(0) = -Bi*(1-theta(0)), theta(5) = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(5) = 1

(2)

a1 := dsolve(subs(beta = .1, n = .5, Pr = 10, gamma = .1, Bi = 50, {bc, eq1, eq2}), numeric, method = bvp[midrich], abserr = 10^(-8), output = array([seq(.1*i, i = 0 .. 10*N)]))

Error, (in dsolve/numeric/BVPSolve) initial Newton iteration is not converging

 

``

 

Download ehtasham.mwehtasham.mw

Dear All

Using Lie algebra package in Maple we can easily find nilradical for given abstract algebra, but how we can find all the ideal in lower central series by taking new basis as nilradical itself?

Please see following;

 

with(DifferentialGeometry); with(LieAlgebras)

DGsetup([x, y, t, u, v])

`frame name: Euc`

(1)
Euc > 

VectorFields := evalDG([D_v, D_v*x+D_y*t, 2*D_t*t-2*D_u*u-D_v*v+D_y*y, t*D_v, D_v*y+D_u, D_t, D_x, D_x*t+D_u, 2*D_v*x+D_x*y, -D_t*t+2*D_u*u+2*D_v*v+D_x*x, D_y])

[_DG([["vector", "Euc", []], [[[5], 1]]]), _DG([["vector", "Euc", []], [[[2], t], [[5], x]]]), _DG([["vector", "Euc", []], [[[2], y], [[3], 2*t], [[4], -2*u], [[5], -v]]]), _DG([["vector", "Euc", []], [[[5], t]]]), _DG([["vector", "Euc", []], [[[4], 1], [[5], y]]]), _DG([["vector", "Euc", []], [[[3], 1]]]), _DG([["vector", "Euc", []], [[[1], 1]]]), _DG([["vector", "Euc", []], [[[1], t], [[4], 1]]]), _DG([["vector", "Euc", []], [[[1], y], [[5], 2*x]]]), _DG([["vector", "Euc", []], [[[1], x], [[3], -t], [[4], 2*u], [[5], 2*v]]]), _DG([["vector", "Euc", []], [[[2], 1]]])]

(2)
Euc > 

L1 := LieAlgebraData(VectorFields)

_DG([["LieAlgebra", "L1", [11]], [[[1, 3, 1], -1], [[1, 10, 1], 2], [[2, 3, 2], -1], [[2, 5, 4], 1], [[2, 6, 11], -1], [[2, 7, 1], -1], [[2, 8, 4], -1], [[2, 9, 5], -1], [[2, 9, 8], 1], [[2, 10, 2], 1], [[3, 4, 4], 3], [[3, 5, 5], 2], [[3, 6, 6], -2], [[3, 8, 8], 2], [[3, 9, 9], 1], [[3, 11, 11], -1], [[4, 6, 1], -1], [[4, 10, 4], 3], [[5, 10, 5], 2], [[5, 11, 1], -1], [[6, 8, 7], 1], [[6, 10, 6], -1], [[7, 9, 1], 2], [[7, 10, 7], 1], [[8, 9, 4], 2], [[8, 10, 8], 2], [[9, 10, 9], 1], [[9, 11, 7], -1]]])

(3)
Euc > 

DGsetup(L1)

`Lie algebra: L1`

(4)
L1 > 

MultiplicationTable("LieTable"):

L1 > 

N := Nilradical(L1)

[_DG([["vector", "L1", []], [[[1], 1]]]), _DG([["vector", "L1", []], [[[2], 1]]]), _DG([["vector", "L1", []], [[[4], 1]]]), _DG([["vector", "L1", []], [[[5], 1]]]), _DG([["vector", "L1", []], [[[6], 1]]]), _DG([["vector", "L1", []], [[[7], 1]]]), _DG([["vector", "L1", []], [[[8], 1]]]), _DG([["vector", "L1", []], [[[9], 1]]]), _DG([["vector", "L1", []], [[[11], 1]]])]

(5)
L1 > 

Query(N, "Nilpotent")

true

(6)
L1 > 

Query(N, "Solvable")

true

(7)

Taking N as new basis , how we can find all ideals in lower central series of this solvable ideal N?

 

Download [944]_Structure_of_Lie_algebra.mw

Regards

I have Maple 2016 on Ubuntu 16.04.  I get an error message when attempting to plot with an x11 device, that means I have missing fonts.

I do not get this error message on Ubuntu14.04, so, I think the difference is in fonts installed.

plotsetup(x11)

> plot([sin(x),cos(x)],x=-Pi..Pi);
> Maple X driver failure:BadName (named color or font does not exist)Warning: Cannot convert string "-adobe-helvetica-bold-r-normal--14-*" to type FontStruct
Warning: Cannot convert string "-adobe-helvetica-medium-r-normal--14-*" to type FontStruct

I have xfonts-100dpi and xfonts-75dpi installed.

Any idea what fonts I need to fix this?

 

Tom Dean

i'm using maple in a research but i want to add a recursive function h_m(t) in 2 case : if m is integer positive and not, 
la formule est donnée comme suit :  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end; 
  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end;
and i wanna to know how to programmate a Gaus Hypegeometric function. Thank You

 

Hi

We know determinant of a square matrix A[ij] (i,j ∈ {1,2,3}) is equal to the following expression

det(A) = 1/6 * e[ijk] * e[pqr] * A[ip] * A[jq] * A[kr] 

in which e[ijk] is a third order Tensor (Permutation notation or Levi-Civita symbol) and has a simple form as follows:

e[mnr] = 1/2 * (m-n) * (n-r) * (r-m).

The (i,j) minor of A, denoted Mij, is the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i and column j of A. The cofactor matrix of A is the n×n matrix C whose (i, j) entry is the (i, j) cofactor of A,

C[ij]= -1 i+j * M[ij]

A-1=CT/det(A)

The general form of Levi-Civita symbol is as bellow:

 

I want to write a program for finding inverse of (NxN) matrix:

N=2 →

restart;
N := 2:
with(LinearAlgebra):
f := (1/2)*(sum(sum(sum(sum((m-n)*(p-q)*A[m, p]*A[n, q], q = 1 .. 2), p = 1 .. 2), n = 1 .. 2), m = 1 .. 2)):
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((37*i^2+j^3)/(2*i+4*j)) end proc):
f/Determinant(A);

N=3 →

restart;
N := 3:
with(LinearAlgebra):
f := (1/24)*(sum(sum(sum(sum(sum(sum((m-n)*(n-r)*(r-m)*(p-q)*(q-z)*(z-p)*A[m, p]*A[n, q]*A[r, z], m = 1 .. N), n = 1 .. N), r = 1 .. N), p = 1 .. N), q = 1 .. N), z = 1 .. N)):
A := Matrix(N, N, proc (i, j) options operator, arrow; 10*i^2/(20*i+j) end proc):
f/Determinant(A);

The results of above programs are equal to 1 and validation of method is observed.

If we can write the general form of determinant then we can find the inverse of any square non-singular matrices.

Now I try to write the mentioned program.

restart;
with(linalg):
N := 7:
Digits := 40:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for i to N do
s[i] := sum(sum(s[i-1], a[i] = 1 .. N), b[i] = 1 .. N)
end do:
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((3*i+j)/(i+2*j)) end proc): # arbitrary matrix
CN:=simplify(s[N]/det(A));

Therefore det(A)= CN-1 * e[a1,a2,..an] * e [b1,b2,.., bn] * A[a1,b1] * A[a2,b2] * ... * A[an,bn].

The correction coefficient is CN(for N)/CN(for N-1) = N!/(N-1)! =N.

restart:
with(linalg): N := 4: Digits := 20:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for r to N do s[r] := sum(sum(s[r-1], a[r] = 1 .. N), b[r] = 1 .. N) end do:
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((3*i+2*j)/(i+2*j)) end proc):
DET:=S[N]:
for x to N do for y to N do
e := product(product(signum(a[j]-a[i]), j = i+1 .. N-1), i = 1 .. N-1):
ML := product(AA[a[k], b[k]], k = 1 .. N-1):
S[0, x, y] := e*subs(`$`(a[q] = b[q], q = 1 .. N-1), e)*ML:
for r to N-1 do S[r, x, y] := sum(sum(S[r-1, x, y], a[r] = 1 .. N-1), b[r] = 1 .. N-1) end do:
f[y, x] := (-1)^(x+y)*subs(seq(seq(AA[t, u] = delrows(delcols(A, y .. y), x .. x)[t, u], t = 1 .. N-1), u = 1 .. N-1), S[N-1, x, y])
end do: end do:
Matrix(N, N, f)/(DET)*(24/6);
A^(-1);

CN for N=4 and N=3 is 24 and 6 respectively i.e. CN(4)/CN(3)=24/6.

When I use bellow procedure the error "(in S) bad index into Matrix" is occurred.

Please help me to write this algorithm by using procedure.

Thank you 

restart; with(linalg): Digits := 40: n := 7:
S := proc (N) local e, ML, s, i:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for i to N do s[i] := sum(sum(s[i-1], a[i] = 1 .. N), b[i] = 1 .. N) end do
end proc:
A := Matrix(n, n, proc (i, j) options operator, arrow; evalf((3*i+j)/(i+2*j)) end proc): # arbitrary matrix
CN := simplify(S(n)/det(A))

This is the coding till i do dhe decryption process. 

Do(plaintext=GetProperty("message",value));
Do(plaintext=convert(GetProperty("message",value),name));
Do(plaintextInt = convert(plaintext, bytes));
Do(plaintextBin = `~`[convert](plaintextInt, binary));
Do(plaintextBin2 = map2(nprintf, "%07d", plaintextBin));
Do(n0 = plaintextBin2[]);
Do(length1 = length(n0));
Do(plaintextCode = cat("", plaintextBin2[]));
Do(length2 = length(plaintextCode));
Do(z = convert(plaintextCode, decimal, binary));
Do(z1 = z+1);
Do(z2 = z1+%sk1);
Do(z3 = convert(z2, base, 2));
Do(b = cat("", z3[]));
Do(z4 = length(b));
Do(z5 = [Bits:-GetBits(-z2, -1 .. 0, bits = z4)]);
Do(z6 = cat("", z5[]));
Do(z7 = convert(z6, decimal, binary));
Do(%C = `mod`(Power(z7, %txte), %txtN));
Do(%C1 = `mod`(Power(%sk1, %txte), %txtN));

Do(%m = `mod`(Power(%C, %d), %N));

Do(%sk2=`mod`(Power(%C1,%d),%N));

Then nw i need to decrypt back to the original message with the coding:

Do(z8 = [Bits:-GetBits(-%m,-1 .. 0, bits = z4)]);
Do(c = cat("", z8[]));
Do(z9 = convert(c, decimal, binary));
Do(z10 = z9-sk2);
Do(z11 = z10-1);
Do(z12 = [Bits:-GetBits(z11, -1 .. 0, bits = length2)]);
Do(d = cat("", z12[]));
Do(plaintextBin2 = [StringTools:-LengthSplit(d, length1)]);
Do(plaintextInt2 = `~`[convert](plaintextBin2, decimal, binary));
Do(%message1 = convert(plaintextInt, bytes));

when i execute the program it shows the error

so how should I solve this as although i think that it should be problem of parsing the number z4 in the sentence that i highlighed, but whenever i correct it it still can't work.Thus anyone who know please help.Thanks.

 

I need to do Huffman Coding by using Document Tools thus i can produce user interface by using coding that referred in this post by Alec Mihailovs. Below is the coding and Document Tools interface:

Do(plaintext=GetProperty("message2",value));
Do(plaintext=convert(GetProperty("message2",value),name));
Do(Freq = proc (message) options operator, arrow; map(proc (x) options operator, arrow; rhs(x) = lhs(x) end proc, {StringTools:-CharacterFrequencies(message)}) end proc);
Do(Fr = Freq(plaintext));
Do(HuffmanTree = proc (message) options operator, arrow; if nops(message) <= 1 then rhs(message[]) else procname(`union`(message[3 .. -1], {lhs(message[1])+lhs(message[2]) = [rhs(message[1]), rhs(message[2])]})) end if end proc);
Do(HT = HuffmanTree(Fr));
Do(HuffmanCoding = proc (message, r := "") if message::string then message = r else procname(message[1], cat(r, 0)), procname(message[2], cat(r, 1)) end if end proc);
Do(HD = HuffmanCoding(HT));
Do(C = table([HD]));
Do(HC = cat(map(proc (x) options operator, arrow; C[x] end proc, StringTools:-Explode(message))[])

It still can get result for first part of the coding.During execute the second part of the coding(as bolded), it produces error ,the error show below.So how should I modified so that the error won't pop out @Alec Mihaivols

 

restart:with(plots):
eq:=(diff(f(eta),eta$2))-a*f(eta)+b*(1+diff(f(eta),eta)^2)^(-1/2)=0;
bc:=f(1)=0,D(f)(0)=0;
ans := dsolve(eq);

hi.how i can determind  eignvalue of matrix in the form parametric?

thanks1.mw

T := Matrix(5, 5, {(1, 1) = -b*beta*k/(c*u)-d, (1, 2) = 0, (1, 3) = -beta*lambda*c*u/(b*beta*k+c*d*u), (1, 4) = 0, (1, 5) = 0, (2, 1) = b*beta*k/(c*u), (2, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P-a, (2, 3) = beta*lambda*c*u/(b*beta*k+c*d*u), (2, 4) = -s*b/c, (2, 5) = r*(s-p)/s, (3, 1) = 0, (3, 2) = k, (3, 3) = -u, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (4, 3) = 0, (4, 4) = -s*b/c-b, (4, 5) = r*(s+c)/s, (5, 1) = 0, (5, 2) = s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (5, 3) = 0, (5, 4) = s*b/c, (5, 5) = -r})

Matrix(5, 5, {(1, 1) = -b*beta*k/(c*u)-d, (1, 2) = 0, (1, 3) = -beta*lambda*c*u/(b*beta*k+c*d*u), (1, 4) = 0, (1, 5) = 0, (2, 1) = b*beta*k/(c*u), (2, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P-a, (2, 3) = beta*lambda*c*u/(b*beta*k+c*d*u), (2, 4) = -s*b/c, (2, 5) = r*(s-p)/s, (3, 1) = 0, (3, 2) = k, (3, 3) = -u, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (4, 3) = 0, (4, 4) = -s*b/c-b, (4, 5) = r*(s+c)/s, (5, 1) = 0, (5, 2) = s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (5, 3) = 0, (5, 4) = s*b/c, (5, 5) = -r})

(1)

``

 

Download 1.mw

 

Hi All

Assume that we have a stochastic model with following density function

and our goal is to estimate unknown parameters namely, alpha, beta, landa, mu and sigma by any available method especially maximum likelihood estimation method.
How can we do it with maple software?

Does the "MaximumLikelihoodEstimate" command can help?

or should i define Maximum Likelihood function first and then differentiate it according to unknown parameters?

 

thanks in advance

 

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

First 188 189 190 191 192 193 194 Last Page 190 of 361