Kitonum

21460 Reputation

26 Badges

17 years, 48 days

MaplePrimes Activity


These are answers submitted by Kitonum

Example:

from 1 to 10 do

combinat[randperm]([$ -3..3])

od;

                

 

 

I do not understand why you take only the first three and the last three terms of the series.

If you want to calculate  cos(70)  with 6 digits by series, then using the fact that the series for the cosine is  alternating and of Leibniz's type first find for which  n  n-th term of the series will be less than  10^(-6) .

fsolve(70^(2*n-2)/(2*n-2)! = 10^(-6), n=1..infinity);

                                 121.7465466

Therefore, it suffices to take 122 members of the series.

 

Two approaches. 

The first way - calculate the sum of these terms symbolically, then approximately with 6 digits:

evalf[6](add((-1)^(n-1)*70^(2*n-2)/(2*n-2)!, n=1..122));

                                 0.633319

 

The second method - compute all members approximately. There need high accuracy, because the first terms of the series in absolute value are very large (40 digits is enough):

Digits:=40:

add((-1)^(n-1)*evalf(70^(2*n-2)/(2*n-2)!), n=1..122):

evalf[6](%);

                                0.633319

 

Gauss - Seidel method is very close to the simple iterative method and differs only in that  each iteration uses just calculated components of this iteration. This method can be used for both linear and nonlinear systems, and its convergence depends on the choice of the starting point and the Jacobian of mapping, defined by the system. For details, see the paper

The basic formula for Gauss - Seidel method:

x1[n] = f1(x1[n-1] , x2[n-1] , x3[n-1])

x2[n] = f2(x1[n] , x2[n-1] , x3[n-1])

x3[n] = f3(x1[n] , x2[n] , x3[n-1])

 

Compare with the formula for simple iterative method:

x1[n] = f1(x1[n-1] , x2[n-1] , x3[n-1])

x2[n] = f2(x1[n-1] , x2[n-1] , x3[n-1])

x3[n] = f3(x1[n-1] , x2[n-1] , x3[n-1])

 

For the example above we find the initial approximation  [6, 0, -3]  of the graphs of the first two equations:

Sys:=[x1^2+x2-37=0, x1-x2^2-5=0, x1+x2+x3-3=0]:

plots[implicitplot](Sys[1..2], x1=-1..12, x2=-4..40, color=[red,blue], gridrefine=3);

                                        

 

From the plot clearly shows that the system has two solutions. At first, we search  the top point using the upper branch of the blue parabola:

Sys1:=[x1=sqrt(37-x2), x2=sqrt(x1-5), x3=3-x1-x2]:

f:=(x1,x2,x3)->(sqrt(37-x2), sqrt(x1-5), 3-x1-x2):

x1[0]:=6.: x2[0]:=0.: x3[0]:=-3.:

f1:=(x1,x2,x3)->f(x1,x2,x3)[1]: f2:=(x1,x2,x3)->f(x1,x2,x3)[2]: f3:=(x1,x2,x3)->f(x1,x2,x3)[3]:

for n from 1 do

x1[n]:=f1(x1[n-1], x2[n-1], x3[n-1]); # Formulas for iterations

x2[n]:=f2(x1[n], x2[n-1], x3[n-1]);

x3[n]:=f3(x1[n], x2[n], x3[n-1]);

if abs(x1[n]-x1[n-1])<10^(-5) and abs(x2[n]-x2[n-1])<10^(-5) and abs(x3[n]-x3[n-1])<10^(-5) then break fi;

od:

n, [x1[n], x2[n], x3[n]]; # The number of itarations and the solution

eval(Sys, [x1=%[2,1], x2=%[2,2], x3=%[2,3]]); # Verification

                  

 

5 iterations was done for needed accuracy.

 

Compare the above solution with the solution by simple iterative method:

f:=(x1,x2,x3)->(sqrt(37-x2),sqrt(x1-5),3-x1-x2):

x1[0]:=6.: x2[0]:=0.: x3[0]:=-3.:

f1:=(x1,x2,x3)->f(x1,x2,x3)[1]: f2:=(x1,x2,x3)->f(x1,x2,x3)[2]: f3:=(x1,x2,x3)->f(x1,x2,x3)[3]:

for n from 1 do

x1[n]:=f1(x1[n-1],x2[n-1],x3[n-1]);

x2[n]:=f2(x1[n-1],x2[n-1],x3[n-1]);

x3[n]:=f3(x1[n-1],x2[n-1],x3[n-1]);

if abs(x1[n]-x1[n-1])<10^(-5) and abs(x2[n]-x2[n-1])<10^(-5) and abs(x3[n]-x3[n-1])<10^(-5) then break fi;

od:

n, [x1[n], x2[n], x3[n]]; 

                      

 

In order to achieve the same accuracy  9 iterations required.

 

The second root of the above system can be found similarly, only it is necessary to take

f:=(x1,x2,x3)->(sqrt(37-x2), -sqrt(x1-5), 3-x1-x2):

 

Edited: header is fixed. At first I wrongly called the method of simple iteration as Newton's method.

Look, even more simple sum (similar to your sum) not simplified in either of finite or infinite range:

sum(exp(-X^2)/(1+exp(X)), X=0..n);

sum(exp(-X^2)/(1+exp(X)), X=0..infinity);

                       

Therefore, probably the only way to compactly write  your sum is to use the inert Sum command.

 

L:=[]: x[0]:=0:

for i from 1 to 20 do

x[i]:=fsolve(KummerM(1/2-1/4*sqrt(2*Nu),1,sqrt(2*Nu)),Nu=x[i-1]+0.1..infinity);

L:=[op(L),x[i]]:

od:

L;

I think that for all symbolic computation of multiple integrals basic  int  command is called.
At first I tried to calculate this integral using  int  command as iterated integral in 2 ways:

int(2*x+2*y+2*z, [z=-sqrt(1-(1/4)*x^2-(1/4)*y^2)+1 .. sqrt(1-(1/4)*x^2-(1/4)*y^2)+1, y=-sqrt(-x^2+4) .. sqrt(-x^2+4), x=-2..2]);    # The first way

int(int(int(2*x+2*y+2*z, z=-sqrt(1-(1/4)*x^2-(1/4)*y^2)+1 .. sqrt(1-(1/4)*x^2-(1/4)*y^2)+1), y=-sqrt(-x^2+4) .. sqrt(-x^2+4)), x=-2..2);    # The second way of the same

                                                  

In the first way, the result is right, in the second -  incorrect. Probably the difference is that in the first way, the restriction   x=-2..2  is taken into account from the outset.

To find out at which step in the second method error occurs, I did all the steps of calculating:

restart;

Int1 := expand(int(2*x+2*y+2*z, z = -sqrt(1-(1/4)*x^2-(1/4)*y^2)+1 .. sqrt(1-(1/4)*x^2-(1/4)*y^2)+1));

Int2 := int(Int1, y = -sqrt(-x^2+4) .. sqrt(-x^2+4));  # Incorrect result  

Int3 := int(Int1, y = -sqrt(-x^2+4) .. sqrt(-x^2+4))  assuming x >= -2, x <= 2;  # Correct result  

int(Int2, x = -2 .. 2);

int(Int3, x = -2 .. 2);

                       

 

Obviously integral  Int2  calculated incorrectly.

 

Conclusion: more reliably to calculate multiple integrals symbolically by syntax

int(f(x,y,z), [z=..., y=..., x=...])  if iterated integral are calculated in that order. 

restart;

X:=l1*cos(theta1)+l2*cos(theta1+theta2)=x:

Y:=l1*sin(theta1)+l2*sin(theta1+theta2)=y:

S:=solve({X, Y}, {theta1,theta2}):

simplify([allvalues(eval(S, {l1=5, l2=5, x=5, y=3}))]);  # Symbolic solution

evalf(%);  # Numeric solution (angles in radians)

 

Your equation is singular at the  r=0  of the factor  1/r. The equation was solved numerically for specific values of the parameters and replacement  0  by the small number  0.0001 .

restart;

n := 1: Nu := 4:

eq := diff(T(r), r, r)+(diff(T(r), r))/r+(3*n+1)*Nu*(1-r^((n+1)/n))*T(r)/(n+1) = 0;

bc := T(1) = 0, D(T)(0.0001) = 1;

Sol := dsolve({eq, bc}, T(r), numeric, maxmesh = 2056, abserr = 10^(-3));

plots[odeplot](Sol, [r, T(r)], r = 0.0001 .. 1);

 

 

You can not use the name  I[b], because  I  is the protected constant (imaginary unit). So I[b] replaced with .

Example:

M:=<1,2; 2,3>;  Q:=<-2,3; 1,5>;

Q^(%T).M.Q;

IsMatrixShape(%,symmetric);

                   

Maybe  OrthogonalExpansion  package help you. It  can be downloaded from 

http://www.maplesoft.com/applications/view.aspx?SID=33406

menu Tools -> Options -> Display -> Uncheck "Automatically display legends in 2-D plots"

simplify(conjugate(exp(I*x)))  assuming x::real;

Your example:

X:=[1,2]:

Y:=[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]]:

Z:=[[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]]:

plots[surfdata]([seq([seq([X[i],Y[i,j],Z[i,j]],j=1..nops(Y[i]))], i=1..nops(X))], axes=normal, view=[-0.5..2.5,-0.5..30.5,-0.5..50.5], orientation=[-40,70], labels=[x,y,z]);

                         

 

 

decToBin:=proc(n::integer)

if n<0 then return NULL fi;

decToBin(0):=0;

if n>0 then decToBin(n):=parse(cat(decToBin(iquo(n,2)), irem(n,2)))  fi;

end proc:

 

Examples of use:

decToBin(10);  decToBin(163);  decToBin(-1);  decToBin(A);

restart;

f:=n->2*(1-n)/3:

k:=0: V:=Vector():

for i from -5 to 5 do

if type(f(i), integer) then k:=k+1;  V(k):=f(i)  fi;

od:

V;

                          

 

 

First 215 216 217 218 219 220 221 Last Page 217 of 290