nm

11353 Reputation

20 Badges

13 years, 8 days

MaplePrimes Activity


These are answers submitted by nm

Your question is not clear. Lets say Z is diff(H(xi), xi)/H(xi)^2. You say you want to replace the coefficient of Z by zero. OK, what if there is    a*Z^2 term? This  is the same as    a*Z*Z. Then should this becomes 0?  or not touched at all, since it is Z^2 and not Z?

Anyway, this below only changes coefficient of linear Z, do not know if this does what you want.

df := diff(H(xi), xi, xi)= 2*diff(H(xi), xi)^2/H(xi) + A *H(xi)^2 + B*(diff(H(xi), xi)/H(xi))^2 + C*diff(H(xi), xi):
eq1:= -216*a1*(2*diff(H(xi), xi)^2/H(xi))+2*a3*(2*diff(H(xi), xi)^2/H(xi) + A + B*diff(H(xi), xi)^2/H(xi)^2 + C*diff(H(xi), xi))*c^2/H(xi)^2+4*diff(H(xi), xi)^3/H(xi)^2+5*diff(H(xi), xi)^2/H(xi)^3+7*diff(H(xi), xi)^3/H(xi)^5:         
eq2 := expand(subs(df, eq1));
 

-432*a1*(diff(H(xi), xi))^2/H(xi)+4*a3*c^2*(diff(H(xi), xi))^2/H(xi)^3+2*a3*c^2*A/H(xi)^2+2*a3*c^2*B*(diff(H(xi), xi))^2/H(xi)^4+2*a3*c^2*C*(diff(H(xi), xi))/H(xi)^2+4*(diff(H(xi), xi))^3/H(xi)^2+5*(diff(H(xi), xi))^2/H(xi)^3+7*(diff(H(xi), xi))^3/H(xi)^5

simplify(eq2,{diff(H(xi), xi)/H(xi)^2=Z}):
eq3:=expand(%);

4*H(xi)^4*Z^3+2*B*a3*c^2*Z^2-432*H(xi)^3*a1*Z^2+4*H(xi)*Z^2*a3*c^2+2*C*a3*c^2*Z+7*H(xi)*Z^3+5*H(xi)*Z^2+2*a3*c^2*A/H(xi)^2

coeff(eq3,Z,1)

2*C*a3*c^2

eq3:=algsubs(%=0,eq3)

4*H(xi)^4*Z^3-432*H(xi)^3*a1*Z^2+7*H(xi)*Z^3+5*H(xi)*Z^2+2*(B*Z^2*H(xi)^2+2*Z^2*H(xi)^3+A)*a3*c^2/H(xi)^2

expand(eval(eq3,Z=diff(H(xi), xi)/H(xi)^2))

 

4*(diff(H(xi), xi))^3/H(xi)^2-432*a1*(diff(H(xi), xi))^2/H(xi)+7*(diff(H(xi), xi))^3/H(xi)^5+5*(diff(H(xi), xi))^2/H(xi)^3+2*a3*c^2*B*(diff(H(xi), xi))^2/H(xi)^4+4*a3*c^2*(diff(H(xi), xi))^2/H(xi)^3+2*a3*c^2*A/H(xi)^2

 

 

Download repl_may_19_2025.mw

ps. by mistake I deleted the answer  as I was changing and do not know how to undelete it. So this is an update.

see if this gives you what you want

eq2 := c*a0*(-lambda*diff(G(xi), xi) - mu*G(xi))/G(xi) - c*a0*diff(G(xi), xi)^2/G(xi)^2 - alpha*a0*diff(G(xi), xi)/((1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) - alpha*a0*lambda/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*diff(G(xi), xi)/((1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + alpha*a0*lambda/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - beta*a0^2*diff(G(xi), xi)^2/(G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - beta*a0^2*diff(G(xi), xi)*lambda/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)^2/(G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + beta*a0^2*diff(G(xi), xi)*lambda/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) - gamma*a0^3*diff(G(xi), xi)^3/(G(xi)^3*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - gamma*a0^3*diff(G(xi), xi)^2*lambda/(2*G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^3/(G(xi)^3*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*lambda/(2*G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))):

collect(eq2,diff(G(xi), xi)):
algsubs(diff(G(xi),xi)=w(xi)*G(xi),%)

alpha*a0*w(xi)*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*alpha*a0*lambda*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))-(1/2)*alpha*a0*(epsilon*lambda^2-4*epsilon*mu)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*w(xi)*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*alpha*a0*lambda*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*alpha*a0*(epsilon*lambda^2-4*epsilon*mu)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))+beta*a0^2*w(xi)^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*beta*a0^2*lambda*w(xi)*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))-(1/2)*beta*a0^2*(epsilon*lambda^2-4*epsilon*mu)*epsilon*f((lambda^2-4*mu)^(1/2)*y)*w(xi)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))+beta*a0^2*w(xi)^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*beta*a0^2*lambda*w(xi)*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*beta*a0^2*(epsilon*lambda^2-4*epsilon*mu)*epsilon*f((lambda^2-4*mu)^(1/2)*y)*w(xi)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))+gamma*a0^3*w(xi)^3*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*gamma*a0^3*lambda*w(xi)^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))-(1/2)*gamma*a0^3*(epsilon*lambda^2-4*epsilon*mu)*epsilon*f((lambda^2-4*mu)^(1/2)*y)*w(xi)^2/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda-(epsilon*lambda^2-4*epsilon*mu)^(1/2))+gamma*a0^3*w(xi)^3*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*gamma*a0^3*lambda*w(xi)^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))+(1/2)*gamma*a0^3*(epsilon*lambda^2-4*epsilon*mu)*epsilon*f((lambda^2-4*mu)^(1/2)*y)*w(xi)^2/(2*f((lambda^2-4*mu)^(1/2)*y)*w(xi)+f((lambda^2-4*mu)^(1/2)*y)*lambda+(epsilon*lambda^2-4*epsilon*mu)^(1/2))-c*a0*w(xi)^2-c*a0*lambda*w(xi)-c*a0*mu

 

 

Download eval_may_16_2025.mw

You can also use 

            collect(eq2,diff(G(xi), xi)):
            eval(%,diff(G(xi),xi)=w(xi)*G(xi));

instead of algsubs if you prefer.

ps. you do not need the collect command, I just did it to see the expression more clearly. it works without it.

parfrac worked for me, Maple 2025. Do not know if this is what you wanted, but here is the code

restart;

Berlekamp(x^9+x^6-x+1,x) mod 11

{x^2+1, x^2+4*x+9, x^5+7*x^4+6*x^3+2*x^2+5*x+5}

G:=1/mul(%)

1/((x^2+1)*(x^2+4*x+9)*(x^5+7*x^4+6*x^3+2*x^2+5*x+5))

convert(G,parfrac,x)

(1/6200)*(-x-2)/(x^2+4*x+9)+(1/1550)*(8*x^4+40*x^3-72*x^2-115*x+95)/(x^5+7*x^4+6*x^3+2*x^2+5*x+5)+(1/200)*(-x+2)/(x^2+1)

 

 

Download parfrac.mw

Did you restart all of Maple after updating the Physics update package? You must restart Maple.

With SupportTools, you just need to issue a restart command and not restart all of Maple. But with Physics, you have to close all of Maple and restart it again.

btw, you should have gotten a message on the screen saying that maple needs to be restarted after updating the Physics update. If you have already restarted Maple and still see this message, then this is different issue.

using some other software, it gives

Integrate[y^2*Cot[y], {y, a, b}, Assumptions -> Element[{a, b}, Reals]

Which in Maple syntax is

 

e:="1/6 (-2 I a^3+2 I b^3-6 a^2 Log[1-E^(-2 I a)]+6 b^2 Log[1-E^(-2 I b)]-6 I a PolyLog[2,E^(-2 I a)]+6 I b PolyLog[2,E^(-2 I b)]-3 PolyLog[3,E^(-2 I a)]+3 PolyLog[3,E^(-2 I b)])":
MmaTranslator:-FromMma(e)

-((1/3)*I)*a^3+((1/3)*I)*b^3-a^2*ln(1-exp(-(2*I)*a))+b^2*ln(1-exp(-(2*I)*b))-I*a*polylog(2, exp(-(2*I)*a))+I*b*polylog(2, exp(-(2*I)*b))-(1/2)*polylog(3, exp(-(2*I)*a))+(1/2)*polylog(3, exp(-(2*I)*b))

Download int_april_22_2025.mw

-a^3*I/3 + b^3*I/3 - a^2*ln(1 - exp(-2*I*a)) + b^2*ln(1 - exp(-2*I*b)) - a*polylog(2, exp(-2*I*a))*I + b*polylog(2, exp(-2*I*b))*I - polylog(3, exp(-2*I*a))/2 + polylog(3, exp(-2*I*b))/2

do not know of a way to disable this behavior. It is "automatic simplification", built into the Maple engine. If it is just for display, you could always use inert operator. 

e:=2%*(a + b + c);
e:=eval(e,a=5);
value(e)#to remove inert


Download inert.mw

I can't read or work with 2D document mode. So changed it to 1D math.

restart;

Ts := 290;
eta := 17;
lambda := 24;

290

17

24

h := 0.2;
ohm := 2*Pi*10;
R := 2;

.2

20*Pi

2

T := x->eta*ohm^2*R^2*(x/h - 1/2*(x/h)^2)/lambda + Ts;

proc (x) options operator, arrow; eta*ohm^2*R^2*(x/h-(1/2)*x^2/h^2)/lambda+Ts end proc

plot(T(x), x = 0.1 .. 0.2);

 

 

Download TSL_bung_9.mw

I would make life simple and just make proc? This also makes your code easier to read.

restart;

numArray := [17, 18, 19];
symArray := [x, y, z];
foo:=proc(i)
     local j;
     symArray[i] = symArray[1]^mul(numArray[j], j = 1 .. i - 1);
end proc:

kronArray := map(i->foo(i),[$ (1 .. 3)])

[17, 18, 19]

[x, y, z]

[x = x, y = x^17, z = x^306]

 

 

Download map_with_proc.mw

But if you really want the proc() inside the map, here is a version that does it

restart;

numArray := [17, 18, 19];
symArray := [x, y, z];


kronArray := map(proc(i) local j;
       symArray[i] = symArray[1]^mul(numArray[j], j = 1 .. i - 1); end
       ,
       [$ (1 .. 3)])

[17, 18, 19]

[x, y, z]

[x = x, y = x^17, z = x^306]

 

 

Download map_with_proc_v2.mw

Maple gives same answer as your book. You just need to call simplify on its answer to make it match the book

ode:=(6*x*y(x)^2+4*x^3*y(x))+(6*x^2*y(x)+x^4+exp(y(x)))*diff(y(x),x)=0;

6*x*y(x)^2+4*x^3*y(x)+(6*x^2*y(x)+x^4+exp(y(x)))*(diff(y(x), x)) = 0

dsolve(ode)

(1/4)*y(x)*(2*x^2+3*y(x))^2-(9/4)*y(x)^3+exp(y(x))+c__1 = 0

simplify(%)

y(x)*x^4+3*y(x)^2*x^2+exp(y(x))+c__1 = 0

 

 

Download same_answer_april_14_2025.mw

use dsolve for exact solution  as follows

restart;

ode:=diff(u(x),x$3)-u(x)=x+2;
IC:=D(u)(0)=2,(D@@2)(u)(0)=2

diff(diff(diff(u(x), x), x), x)-u(x) = x+2

(D(u))(0) = 2, ((D@@2)(u))(0) = 2

dsolve([ode,IC])

u(x) = -2-x+(1/2)*(5+c__2)*exp(x)+c__2*exp(-(1/2)*x)*cos((1/2)*3^(1/2)*x)+(1/3)*3^(1/2)*exp(-(1/2)*x)*sin((1/2)*3^(1/2)*x)

 

 

Download dsolve_april_8_2025.mw

this ode is of type homogeneous A, it is also isobaric, and it can also be solved using Lie symmetry.

If you do not like LambertW function, then ask for implicit solution, or ask for solution using Int, then you will not see LambertW. But there is no way to avoid LambertW if you want an explicit solution.

ode:=diff(y(x),x)+x/y(x)+2=0;

diff(y(x), x)+x/y(x)+2 = 0

dsolve(ode);

y(x) = -x*(LambertW(-c__1*x)+1)/LambertW(-c__1*x)

sol:=dsolve(ode,'implicit');

-c__1+(ln((y(x)+x)/x)*x+ln((y(x)+x)/x)*y(x)+x)/(y(x)+x)+ln(x) = 0

solve(sol,y(x))

-x*(LambertW(-x/exp(c__1))+1)/LambertW(-x/exp(c__1))

dsolve(ode,useInt)

y(x) = RootOf(-Intat(-_a/(_a^2+2*_a+1), _a = _Z)+Int(1/x, x)+c__1)*x

 

 

 

Download no_lambertW.mw

When you have a solution of the form  y*exp(y)=x  then  y=LambertW(x) by definition. So if you do not want to see LambertW, ask for implicit solution, so Maple will not generate LambertW

it is in HOME menu not the view 

 

ex: ?*sol* which at least will return solve,dsolve etc.

I assume you wanted an actual list. Not Help pages. I do not think there is built in command to do this. But you could search the maple.mla and get list of all .m files with "sol" in the name. This does not mean these will also be commands you can call from command line, but they could be

LibLocation:=cat(kernelopts(mapledir),"/lib/maple.mla");
tbl:=LibraryTools:-ShowContents(LibLocation):
tbl:=tbl[..,1]:
the_result:=map(X->`if`(StringTools:-Search("sol",FileTools:-Basename(X))>0,FileTools:-Basename(X),NULL),tbl):
nops(the_result);

    #201

So there are 201 Maple .m files in library with "sol" in the name. Here is the list

convert(the_result,set); #to remove duplicate .m files in different packages

{"Dsolve", "Expsols", "IVPsol", "Isolate", "Lsols3", "abelsol", "dsolve", 
"eqnsol", "expsols", "fsolve", "g_solve", "gfsolve", "hsols", "hsolsR", 
"isolate", "isolve", "liesol", "linsol", "msolve", "odsolve", "onesol", 
"pFqsols", "partsol", "pdsolve", "polysol", "ratsols", "rsolve", "sdsolve", 
"singsol", "sol_std", "sols_LR", "solve", "solve_c", "solvefr", "solveit", 
"solver", "sysol", "tsolve", "BlockResolve", "DARsolve_pair", "DFactorsols",
 "GBIsolve_pair", "Heunsols", "IsolateInt", "LCLMsols", "Linsolve",
 "MeijerG_solver", "MeijerGsols", "MeijerGsols2", "RiemannPsols", 
"agfmomentsolve", "algebraic_sols", "bernoullisol", "buildsol", "checksol", 
"chinisol", "clairautsol", "constcoeffsol", "constcoeffsols", "dalembertsol", 
"dperiodic_sols", "dsolve_int", "eqnsolve", "eulersols", "evolve_solution",
 "exact_sol", "exact_sol_sol", "exactsol", "formal_sol", "general_sol",
 "general_sols", "genhomosol", "hypergeomsols", "inexact_sol",
 "integrate_sols", "interp_soln", "intsolve", "isolated", "isolveROf", 
"kovacicsols", "lift_sol1", "linearsol", "matrixsoln", "mhypergeomsols", 
"newsolve", "oda_solve", "parametricsol", "particularsol", "pdesolcompare2", 
"pdesolve", "piecewisesoln", "plist_solnproc", "polysols", "process_sol", 
"ratpolysols", "recsolve", "resolveinits", "riccatisol", "separablesol",
 "seriessolve", "sol_1order_eq", "solcheck", "solnproc", "sols_with_type", 
"solvable", "solvable_type", "solveODE", "solve_LCLM", "solve_condition",
 "solve_group", "solve_inh", "solve_quadratic", "solve_sympow_o2", 
"solve_sympr_o2", "solvefor", "solvemodv", "solvemodv1", "sympowsol", 
"test_ratsols", "ODE_heu_degree_poly_sol", "algfun_series_sol", 
"build_gen_solution", "chain_resolution", "complete_solutions", 
"dverk78_solnproc", "expsols_reduceorder", "general_solutions",
 "general_solutions2", "get_particular_solution", "hypergeometricsols",
 "initialize_solution", "make_solution_module", "numeric_matrixsoln", 
"plus_min_expsols", "power_series_solution", "rational_solutions", 
"solve_LCLM_nth_root", "solve_Riccati_for_H", "solve_algebraic_form",
 "solve_conditions", "solve_semiregular", "solve_sympr_o2_no_DF1",
"solveconditionals", "test_no_solution", "FPSpower_series_solution", 
"linearODE_completesolutions", "lower_order_ODE_is_solvable", 
"power_series_solution_orig"}

Or if you wanted the .m file name with the package name also:

LibLocation:=cat(kernelopts(mapledir),"/lib/maple.mla");
tbl:=LibraryTools:-ShowContents(LibLocation):
tbl:=tbl[..,1]:
the_result:=map(X->`if`(StringTools:-Search("sol",FileTools:-Basename(X))>0,[X,FileTools:-Basename(X)],NULL),tbl):

Matrix(the_result[1..15]);  #fshow first 15 , too long to show all in Mapleprimes
 

 

This is command to use to search
 

 

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

restart;

find_function_in_maple:=proc(the_name::string)::list;
   local LibLocation:=cat(kernelopts(mapledir),"/lib/maple.mla");
   local tbl:=LibraryTools:-ShowContents(LibLocation):
   local the_result::list;
   tbl:=tbl[..,1]:
   the_result:=map(X->`if`(
       searchtext(the_name,FileTools:-Basename(X))>0,#case insenetive search
         [FileTools:-Basename(X),X],NULL),tbl):
end proc:

the_result:=  find_function_in_maple("solve"):
Matrix(the_result);

_rtable[36893622605679616236]

the_result:=  find_function_in_maple("find"):
Matrix(the_result);

_rtable[36893622605552930556]

the_result:=  find_function_in_maple("matrix"):
Matrix(the_result);

_rtable[36893622605552914908]

the_result:=  find_function_in_maple("simplify"):
Matrix(the_result);

_rtable[36893622605552907436]

 


 

Download find_command.mw

maple pattern matching is not very advanced. But you can do pattern matching on indexed like this

patmatch(S[a],A::indexed,'la')

And this gives la as A = S[a] but as far as I know you can not also add patterns to inside of the indexed also. so this does not work

patmatch(S[a],S[b::symbol]::indexed,'la')

even though it gives true, la  result is not useful, it gives

      [S[b::symbol] = S[a]]

i.e. it does not give b=a as expected.

May be there is a trick, but I could never find it. Maplesoft have not made any improvements or changes to its patmatch function for ages (they are busy with AI things these days) and help is very weak also for this function.

1 2 3 4 5 6 7 Last Page 1 of 20