nm

11483 Reputation

20 Badges

13 years, 82 days

MaplePrimes Activity


These are answers submitted by nm

on my PC, windows 10, Maple 2024.2 has maple.mla of size 268 MB.

You can sort its content by size of each m file inside the mla. This is result of first top 10 entries by size

The 4th column, according to help under LibraryTools:-ShowContents  is the size in bytes of the m file.

Here is worksheet which displays all entries in Maple.mla sort by size.

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

restart;

library := FileTools:-JoinPath(["lib", "maple.mla"], base=mapledir):

the_content:=LibraryTools:-ShowContents(library):

#sort by large size to small size
the_content:=ArrayTools:-SortBy( convert(the_content,Matrix) ,'column', 4,'descending', 'inplace' ):
the_content[1..10];

Matrix(10, 4, {(1, 1) = "evalf/int/GaussLaguerreQuadratureTable.m", (1, 2) = [2024, 3, 1, 8, 35, 48], (1, 3) = 154783114, (1, 4) = 2376962, (2, 1) = "casesplit/K.m", (2, 2) = [2024, 3, 1, 8, 30, 34], (2, 3) = 57860403, (2, 4) = 159362, (3, 1) = "subtype.m", (3, 2) = [2024, 3, 1, 8, 52, 29], (3, 3) = 62029141, (3, 4) = 139356, (4, 1) = "RegularChains.m", (4, 2) = [2024, 3, 1, 8, 31, 30], (4, 3) = 173035257, (4, 4) = 100337, (5, 1) = "inttrans/mellin/bessel/table.m", (5, 2) = [2024, 3, 1, 8, 49, 53], (5, 3) = 60561441, (5, 4) = 88741, (6, 1) = "context/defaultconfig.m", (6, 2) = [2024, 3, 1, 8, 49, 23], (6, 3) = 25630911, (6, 4) = 77254, (7, 1) = "ifactor/PollardP1/tree.m", (7, 2) = [2024, 3, 1, 8, 26, 13], (7, 3) = 83287450, (7, 4) = 74717, (8, 1) = "inttrans/invmellin/bessel/table.m", (8, 2) = [2024, 3, 1, 8, 49, 47], (8, 3) = 138871406, (8, 4) = 68185, (9, 1) = "evalf/int/GaussLegendreQuadratureTable.m", (9, 2) = [2024, 3, 1, 8, 35, 48], (9, 3) = 139687979, (9, 4) = 60871, (10, 1) = "convert/Sum/from.m", (10, 2) = [2024, 3, 1, 8, 33, 51], (10, 3) = 80273108, (10, 4) = 57302})

the_table :=Array(1..0):
the_table ,= ["m file name","size in bytes (4th column)","cummulative size in bytes"]:
total_size := 0:
for N from 1 to  LinearAlgebra:-RowDimension(the_content) do    
    current_size:=the_content[N,4]:
    total_size:= total_size+current_size:
    the_table ,= [the_content[N,1],current_size,total_size]:
    if N>20 then #remove this check to see all, as table becomes too large to show
       break;
    fi;
od:
the_table:=convert(the_table,listlist):
DocumentTools:-Tabulate(the_table,width=40,weights = [2, 1, 1]);

"Tabulate1"

 


Download lib_size_nov_5_2024.mw

Updated to add 2 columns , exact and approx solutions. ps also changed x values list. Note at x=1 we have division by zero in exact solution.

restart;

exact_sol:=1/(1-x);
approx_sol:=1 + x + 37/60*x^5 + 2/3*x^4 + 1/3*x^3 + x^2 + 2351/7560*x^9 + 781/1680*x^8 + 101/210*x^7 + 53/120*x^6 + 1/7*x^10 + 1091/23100*x^11 + 11/15600*x^13 + 11/1200*x^12;

1/(1-x)

1+x+(37/60)*x^5+(2/3)*x^4+(1/3)*x^3+x^2+(2351/7560)*x^9+(781/1680)*x^8+(101/210)*x^7+(53/120)*x^6+(1/7)*x^10+(1091/23100)*x^11+(11/15600)*x^13+(11/1200)*x^12

the_table :=Array(1..0):
the_table ,= [x,"exact solution", "approximate solution","Abs Error","Relative Error"]:
data:=[seq(i,i=0..1,0.1)];
for item in data do
    current_exact_sol:=evalf(eval(exact_sol,x=item));
    current_approx_sol:=evalf(eval(approx_sol,x=item));
    current_error := abs(current_exact_sol-current_approx_sol);
    current_relative_error := current_error/current_exact_sol;
    the_table ,= [item,current_exact_sol,current_approx_sol,current_error ,current_relative_error]:
od:
the_table:=convert(the_table,listlist):
DocumentTools:-Tabulate(the_table,width=60):

[0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1.0]


Download error_table_nov_5_2024.mw

igcd(45,63)

     9

So it is (A)

 is there a way to generate solutions to an ODE by producing specific parameters?

May be I am not answering the correct question. Why not do something similar to you question How-I-Can-Give-Assumption-To-A-ODE-Equation  where you setup the values in list and iterate over them?

btw, I assumed m->1^{-} means limit as m->1 from left.   some of these values when substituted into the ode and m is replaced by 1, give same ode!. You can add more parameters as needed.

restart;

data:=[ [P=m^2,Q=-(1+m^2),R=1],
        [P=1,Q=-(1+m^2),R=m^2],
        [P=-m^2,Q=2*m^2-1,R=1-m^2],
        [P=1,Q=2*m^2-1,R=-m^2*(1-m^2)],
        [P=1/4,Q=(m^2-2)/2,R=m^2/4],
        [P=m^2/4,Q=(m^2-2)/2,R=m^2/4]
        ]:
the_result :=Array(1..0):
the_result ,= [P,Q,R,"current ode","solution"]:
ode:=diff(F(xi),xi)^2=P*F(xi)^4+Q*F(xi)^2+R:
for item in data do
    current_ode:=limit(eval(ode,item),m=1,'left'):
    sol:=[dsolve(current_ode)]:
    the_result ,= [rhs(item[1]),rhs(item[2]),rhs(item[3]),current_ode,sol]:        
od:
the_result:=convert(the_result,listlist):
DocumentTools:-Tabulate(the_result,weights=[10,20,20,45,45],width=60):


 

Download ode_answer_oct_26_2024.mw


 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

data:=[[A,B],[0,B],[A,0],[0,0]]:
the_result :=Array(1..0):
ode:=diff(G(xi),xi)=G(xi)^2+A*G(xi)+B:
the_result ,= ["A","B","solution"]:

for item in data do
    eval(ode,[A=item[1],B=item[2]]):
    sol:=dsolve(%):
    the_result ,= [item[1],item[2],sol]:
od:
the_result:=convert(the_result,listlist):
DocumentTools:-Tabulate(the_result,weights=[10,10,100],width=30):
 

Download dsolve_oct_25_2024.mw

update

This version evaluates U=a0+a1*G(xi) after solving for G(xi) using current cases. And then verifies the U solution against the current updated F_ode.

May be this is what the question asks for?

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

data:=[[A=A,B=B],[A=0,B=B],[A=A,B=0],[A=0,B=0]]:
the_result :=Array(1..0):
G_ode:=diff(G(xi),xi)=G(xi)^2+A*G(xi)+B:
F_ode := (-delta*eta^2 + alpha*eta)*diff(diff(U(xi), xi), xi) - U(xi)*(2*eta*gamma*theta*(delta*eta - alpha)*U(xi)^2 + eta^2*delta*k^2 + (-alpha*k^2 - 2*delta*k)*eta + 2*k*alpha + delta) = 0:
the_cases := [alpha = delta*(A^2*eta^2 - 2*eta^2*k^2 - 4*B*eta^2 + 4*eta*k - 2)/(A^2*eta - 2*eta*k^2 - 4*B*eta + 4*k),
             eta = eta,
             a[0] = -A/(2*gamma*theta*RootOf(_Z^2*gamma*theta + 1)),
             a[1] = RootOf(_Z^2*gamma*theta + 1)
             ]:
a0_original_value:=select(has,the_cases,a[0])[]:
a1_original_value:=select(has,the_cases,a[1])[]:
the_result ,= ["A","B",a0_original_value,a1_original_value,G(xi),U(xi)=a[0] + a[1]*G(xi),"odetest result"]:

for item in data do
    current_G_ode:=eval(G_ode,item):
    sol_G:=dsolve(current_G_ode):
    current_case := eval(the_cases,item):
    current_F_ode:=eval(F_ode,current_case):
    my_U_sol:= eval(a[0] + a[1]*G(xi),[op(current_case),sol_G]);
    was_verified:=odetest(U(xi)=my_U_sol,current_F_ode);
    a0_usesd :=rhs(select(has,current_case,a[0])[]);
    a1_usesd :=rhs(select(has,current_case,a[1])[]);
    the_result ,= [rhs(item[1]),rhs(item[2]),a0_usesd,a1_usesd,sol_G,my_U_sol,was_verified]:
od:
the_result:=convert(the_result,listlist):
DocumentTools:-Tabulate(the_result,weights=[10,10,50,50,100,100,20],width=80):
 


Download dsolve_oct_25_2024_V2.mw

This is what I get in 2024.1.  Not sure if this is what you meant.

M:=sin(x)/cos(x);
simplify(M);

sin(x)/cos(x)

tan(x)

M:=1/sin(x);
simplify(M);

1/sin(x)

csc(x)

M:=1/cos(x);
simplify(M);

1/cos(x)

sec(x)

Q:=sqrt(beta/(B*cos(zeta*sqrt(-lambda))))

(beta/(B*cos(zeta*(-lambda)^(1/2))))^(1/2)

simplify(Q) assuming lambda>0

(beta*sech(zeta*lambda^(1/2))/B)^(1/2)

 

 

Download trig_simplification.mw

may be this is what you meant

old_values := [alpha = 0.33101604, theta = -2.54098361, mu = 4.89071038, k = 5.0, A[1] = 2.70491803, a = 3.63387978];

[alpha = .33101604, theta = -2.54098361, mu = 4.89071038, k = 5.0, A[1] = 2.70491803, a = 3.63387978]

new_values:=map(X->lhs(X)=MapleTA:-Builtin:-decimal(2,rhs(X)),old_values)

[alpha = .33, theta = -2.54, mu = 4.89, k = 5.00, A[1] = 2.70, a = 3.63]

#or

new_values:=map(X->lhs(X)=:-parse(sprintf("%.2f",rhs(X))),old_values)

[alpha = .33, theta = -2.54, mu = 4.89, k = 5.00, A[1] = 2.70, a = 3.63]

 

 

Download change_decimal.mw

Now use the new_values instead.

set the ranges then it works like Matlab

f:=x^(2*z)+y^(-2*y^(-z))+exp(-1/10*z^2)=1;
plots:-implicitplot3d(f,x=1.3..2,y=1.3..2,z=-2..-1.3,style=surface)

 

x^(2*z)+y^(-2*y^(-z))+exp(-(1/10)*z^2) = 1

 


As for the gridlines, this option does not seem to be supported for 3D plots in Maple. May be someone knows of a trick.

 

Download plot3d.mw

This fixes two issues you had. you need to remove the O() from the series solution, and need to add [] around ode and the IC. But Maple can't solve the final pde analytically.  V 2024.1
 

restart;

ode0 := diff(xi^2*diff(theta[E](xi), xi), xi)/xi^2 = -theta[E](xi)^n;

(2*xi*(diff(theta[E](xi), xi))+xi^2*(diff(diff(theta[E](xi), xi), xi)))/xi^2 = -theta[E](xi)^n

bc0 := theta[E](0) = 1, D(theta[E])(0) = 0;

theta[E](0) = 1, (D(theta[E]))(0) = 0

base := dsolve([bc0, ode0], theta[E](xi), series);
base := convert(base,polynom);

theta[E](xi) = series(1-(1/6)*xi^2+((1/120)*n)*xi^4+O(xi^6),xi,6)

theta[E](xi) = 1-(1/6)*xi^2+(1/120)*n*xi^4

pde1 := diff(xi^2*diff(psi(xi, mu), xi), xi)/xi^2 + diff((-mu^2 + 1)*diff(psi(xi, mu), mu), mu)/xi^2 = -psi(xi, mu)^n + v;

(2*xi*(diff(psi(xi, mu), xi))+xi^2*(diff(diff(psi(xi, mu), xi), xi)))/xi^2+(-2*mu*(diff(psi(xi, mu), mu))+(-mu^2+1)*(diff(diff(psi(xi, mu), mu), mu)))/xi^2 = -psi(xi, mu)^n+v

bc1 := psi(0, mu) = 1, D[1](psi)(0, mu) = 0, D[2](psi)(0, mu) = 0, limit(psi(xi, mu), v = 0) = rhs(base);

psi(0, mu) = 1, (D[1](psi))(0, mu) = 0, (D[2](psi))(0, mu) = 0, psi(xi, mu) = 1-(1/6)*xi^2+(1/120)*n*xi^4

psi(xi, mu)

psi(xi, mu)

pdsolve([pde1, bc1],psi(xi, mu))

pdsolve([pde1, bc1],psi(xi, mu),series)

pdsolve(pde1,psi(xi, mu))

 


 

Download Nonlinear_Elliptic_PDE_in_Spherical_Coordinate.mw

Change your alpha to start from say 0.05 instead from 0 then it works.

You can see from your formula for M that you are dividing by alpha (inside the integral). Hence you can not use alpha=0 in the slider.
 

params := {alpha = 1, gg = 0.1, k = 1, mu = 10, sigma = 5, w = 2};

{alpha = 1, gg = .1, k = 1, mu = 10, sigma = 5, w = 2}

M := sqrt(-(gamma*(gamma*k*mu - 2*k*sigma)*k/(gamma*sigma - 1) + k^2)/alpha)*sinh(2*(gamma*k*(2*gamma*k*w + 2*k^2 + sigma^2)/(gamma*sigma - 1) - 2*k*sigma)*t/(gamma*sigma - 1))*exp(((2*gamma*k*w + 2*k^2 + sigma^2)*t/(gamma*sigma - 1) + sigma*x)*I)/(cosh(2*(gamma*k*(2*gamma*k*w + 2*k^2 + sigma^2)/(gamma*sigma - 1) - 2*k*sigma)*t/(gamma*sigma - 1)) - 1);

(-(gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+k^2)/alpha)^(1/2)*sinh(2*(gamma*k*(2*gamma*k*w+2*k^2+sigma^2)/(gamma*sigma-1)-2*k*sigma)*t/(gamma*sigma-1))*exp(((2*gamma*k*w+2*k^2+sigma^2)*t/(gamma*sigma-1)+sigma*x)*I)/(cosh(2*(gamma*k*(2*gamma*k*w+2*k^2+sigma^2)/(gamma*sigma-1)-2*k*sigma)*t/(gamma*sigma-1))-1)

Explore(
     plot3d(abs(M), t = -5 .. 5, x = -10 .. 10,
        view = -10 .. 10, grid = [150, 150],
        color = [blue], style = surface, adaptmesh = false,
        size = [500, 500]),

     alpha = 0.05 .. 1.0,
     w = -5.0 .. 5.0,
     mu = -5.0 .. 5.0,
     sigma = -5.0 .. 5.0,
     k = -5.0 .. 5.0,

     placement = right);

 


 

Download change_alpha.mw

 

 

one way is to use allvalues

eq1:=y=1/2*(x-5)^2-6;
eq2:=y=3*x-2;

y = (1/2)*(x-5)^2-6

y = 3*x-2

sol:=solve([eq1,eq2],{x,y})

{x = RootOf(_Z^2-16*_Z+17), y = 3*RootOf(_Z^2-16*_Z+17)-2}

allvalues(sol)

{x = 8-47^(1/2), y = 22-3*47^(1/2)}, {x = 8+47^(1/2), y = 22+3*47^(1/2)}

 

 

Download allvalues.mw

 

 

restart;

mylist := [[sqrt(-5*x^2 - 5*x - 1) = -4*x - 1, {-1/3, -2/7}], [sqrt(-5*x^2 - 5*x - 1) = x + 1, {-1/2, -2/3}], [sqrt(-5*x^2 - 5*x - 1) = 4*x + 3, {-2/3, -5/7}], [sqrt(-5*x^2 - 5*x + 4) = -5*x + 3, {1/2, 1/3}], [sqrt(-5*x^2 - 4*x + 2) = -5*x + 2, {1/3, 1/5}], [sqrt(-5*x^2 - 4*x + 2) = -2*x + 1, {-1/3, 1/3}]]:

toX:=s->latex(s,output=string):
s:="\\begin{enumerate}[label=\\arabic*)]\n":
for item in mylist do
    s:=cat(s,"\\item $",toX(item[1])," $\\hfill Answer: $",toX(item[2]),"$\n"):
od:
s:=cat(s,"\\end{enumerate}\n"):
    

printf("%s",s)

\begin{enumerate}[label=\arabic*)]
\item $\sqrt{-5 x^{2}-5 x -1} = -4 x -1 $\hfill Answer: $\left\{-{\frac{2}{7}}, -{\frac{1}{3}}\right\}$
\item $\sqrt{-5 x^{2}-5 x -1} = x +1 $\hfill Answer: $\left\{-{\frac{2}{3}}, -{\frac{1}{2}}\right\}$
\item $\sqrt{-5 x^{2}-5 x -1} = 4 x +3 $\hfill Answer: $\left\{-{\frac{5}{7}}, -{\frac{2}{3}}\right\}$
\item $\sqrt{-5 x^{2}-5 x +4} = -5 x +3 $\hfill Answer: $\left\{{\frac{1}{2}}, {\frac{1}{3}}\right\}$
\item $\sqrt{-5 x^{2}-4 x +2} = -5 x +2 $\hfill Answer: $\left\{{\frac{1}{3}}, {\frac{1}{5}}\right\}$
\item $\sqrt{-5 x^{2}-4 x +2} = -2 x +1 $\hfill Answer: $\left\{-{\frac{1}{3}}, {\frac{1}{3}}\right\}$
\end{enumerate}

 


 

Download to_latex_sept_19_2024.mw

I do not think there is a way to tell dsolve to do this. But you can post-process the solution. Here is an example.

But pretty soon you will start having constants of integrations like c__100 and c__101 or may be c__5000 and so on depending on how many ODE's you plan to run in your loop. 
 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

restart;

fix_my_C:=proc(sol::`=`)::`=`;
   local C_used::set,my_C::set;
   C_used:= indets(sol,And(symbol, suffixed(c__, nonnegint))):
   my_C := map(X->X=`tools/genglobal`(c__),C_used):
   eval(sol,my_C);
end proc:
 

`tools/genglobal`[1](c__, 1, :-reset); #do once at start

ode:=diff(y(x),x$3)+y(x)=sin(x);
sol:=dsolve(ode);
sol:=fix_my_C(sol);

diff(diff(diff(y(x), x), x), x)+y(x) = sin(x)

y(x) = -(1/2)*cos(x)/((3^(1/2)-2)*(2+3^(1/2)))-(1/2)*sin(x)/((3^(1/2)-2)*(2+3^(1/2)))+c__1*exp(-x)+c__2*exp((1/2)*x)*cos((1/2)*3^(1/2)*x)+c__3*exp((1/2)*x)*sin((1/2)*3^(1/2)*x)

y(x) = -(1/2)*cos(x)/((3^(1/2)-2)*(2+3^(1/2)))-(1/2)*sin(x)/((3^(1/2)-2)*(2+3^(1/2)))+c__1*exp(-x)+c__2*exp((1/2)*x)*cos((1/2)*3^(1/2)*x)+c__3*exp((1/2)*x)*sin((1/2)*3^(1/2)*x)

ode:=diff(y(x),x$2)+y(x)=sin(x);
sol:=dsolve(ode);
sol:=fix_my_C(sol);

diff(diff(y(x), x), x)+y(x) = sin(x)

y(x) = sin(x)*c__2+cos(x)*c__1+(1/2)*sin(x)-(1/2)*cos(x)*x

y(x) = sin(x)*c__5+cos(x)*c__4+(1/2)*sin(x)-(1/2)*cos(x)*x

ode:=diff(y(x),x)+y(x)=sin(x);
sol:=dsolve(ode);
sol:=fix_my_C(sol);

diff(y(x), x)+y(x) = sin(x)

y(x) = -(1/2)*cos(x)+(1/2)*sin(x)+c__1*exp(-x)

y(x) = -(1/2)*cos(x)+(1/2)*sin(x)+c__6*exp(-x)

ode:=diff(y(x),x$5)+y(x)=0;
sol:=dsolve(ode);
sol:=fix_my_C(sol);

diff(diff(diff(diff(diff(y(x), x), x), x), x), x)+y(x) = 0

y(x) = c__1*exp(-x)-c__2*exp((-(1/4)*5^(1/2)+1/4)*x)*sin((1/4)*2^(1/2)*(5+5^(1/2))^(1/2)*x)-c__3*exp(((1/4)*5^(1/2)+1/4)*x)*sin((1/4)*2^(1/2)*(5-5^(1/2))^(1/2)*x)+c__4*exp((-(1/4)*5^(1/2)+1/4)*x)*cos((1/4)*2^(1/2)*(5+5^(1/2))^(1/2)*x)+c__5*exp(((1/4)*5^(1/2)+1/4)*x)*cos((1/4)*2^(1/2)*(5-5^(1/2))^(1/2)*x)

y(x) = c__7*exp(-x)-c__8*exp((-(1/4)*5^(1/2)+1/4)*x)*sin((1/4)*2^(1/2)*(5+5^(1/2))^(1/2)*x)-c__9*exp(((1/4)*5^(1/2)+1/4)*x)*sin((1/4)*2^(1/2)*(5-5^(1/2))^(1/2)*x)+c__10*exp((-(1/4)*5^(1/2)+1/4)*x)*cos((1/4)*2^(1/2)*(5+5^(1/2))^(1/2)*x)+c__11*exp(((1/4)*5^(1/2)+1/4)*x)*cos((1/4)*2^(1/2)*(5-5^(1/2))^(1/2)*x)

ode:=diff(y(x),x$2)+y(x)=sin(x)+1;
sol:=dsolve(ode);
sol:=fix_my_C(sol);

diff(diff(y(x), x), x)+y(x) = sin(x)+1

y(x) = sin(x)*c__2+cos(x)*c__1+(1/2)*sin(x)+1-(1/2)*cos(x)*x

y(x) = sin(x)*c__13+cos(x)*c__12+(1/2)*sin(x)+1-(1/2)*cos(x)*x

 


 

Download different_C_for_each_dsolve.mw

If you convert it to poly then it works. The command is convert(p,polynom)

p := asympt(x*1/(1 - a*x - b*x^2), x);
p:=convert(p,polynom);

-1/(b*x)+a/(b^2*x^2)-(1/b+a^2/b^2)/(b*x^3)-(-a/b^2-(a^2+b)*a/b^3)/(b*x^4)-((a^2+b)/b^3+a^2*(a^2+2*b)/b^4)/(b*x^5)+O(1/x^6)

-1/(b*x)+a/(b^2*x^2)-(1/b+a^2/b^2)/(b*x^3)-(-a/b^2-(a^2+b)*a/b^3)/(b*x^4)-((a^2+b)/b^3+a^2*(a^2+2*b)/b^4)/(b*x^5)

coeff(p,1/x)

-1/b

 

 

Download coeffs.mw

DESol in solution really means there is no closed form solution. At least Maple could not find one.

You did not give the input you used so can't verify.

But you can always use something like select or evalindets to pick these out. Below worksheet showing how. Maple 2024.1 on windows

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

ode:=diff(y(x),x)-y(x)*a-b*y(x)^2=f(x);
sol:=dsolve(ode);

diff(y(x), x)-y(x)*a-b*y(x)^2 = f(x)

my_sol := DESol( ode, y(x) );

DESol({diff(y(x), x)-y(x)*a-b*y(x)^2-f(x)}, {y(x)})

#to extract just first argument of DESol
evalindets(my_sol,'specfunc'(anything,DESol),F->op(1,F))

{diff(y(x), x)-y(x)*a-b*y(x)^2-f(x)}

#to extract all arguments
evalindets(my_sol,'specfunc'(anything,DESol),F->op(1..,F))

{diff(y(x), x)-y(x)*a-b*y(x)^2-f(x)}, {y(x)}

 


 

Download pick_DESol_argument.mw

2 3 4 5 6 7 8 Last Page 4 of 20