Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

It's becoming increasingly common for questions to be deleted, the most frequently evoked argument being that they duplicate earlier questions.
Usually it's the author of the question who complains, in this case it's the one who provided an answer.

I've always found this self-given freedom on the part of moderators somewhat inappropriate, especially given that these deletions are done on the sly, without even the courage to be explicitly claimed by their authors.

Couldn't these latter take the time to leave a message indicating what they've just done (and why) and where the deleted question, and any exchanges associated with it, can be found?
Otherwise, this attitude is more akin to contempt and censorship than to real management of this blog.

A few years ago, when I came to this site, these deletions were the exception and I can only deplore the fact that they have become commonplace.
They say that life is better elsewhere, I don't know, but what I do know is that I've never come across this on any Scilab, R, SageMath or OpenTurns user's blog.

Anyway, here's the reply I sent to @salim-barzani :  Hirota_derivative_KdV_equation.mw

Is it possible to configure newer maple versions to use a different file extension ?

I have a lot of  Maple 9 files  with .mw extension. I dont want them opened and saved by a later version as they are valuable and actually work better than later maple versions which throws unneccesary signum errors. The results are verified so the signum errors are bogus in the recent maple versions running the same file.

Particularly, can I configure e.g. Maple 2022 to save to a different file extension say .mww or similar rather than .mw so I can avoid destroying to original 9.5 files?

What systematic methods can be used to determine the optimal parameters in a long equation involving two independent variables, and how do techniques like separation of variables, balancing principles, or dimensional analysis aid in simplifying and solving such equations?

parameters_x_t.mw

Some of the calculations mentioned here can be done in alternative programming languages, such as Python, C, and so on. However, I would like to reproduce exactly these graphs using Maple (without the need for programming commands, such as "if", "while", among others).

In the work I am trying to reproduce, we have "The evaluation of the influence of the inclusion of the broadband behavior of grounding systems in EMT-type programs in the evaluation of transients resulting from direct lightning strikes on transmission lines. The behavior of the grounding frequency is determined using an accurate electromagnetic model and included in the EMTP/ATP by means of an equivalent circuit derived from the Vector Fitting technique. In addition, the impact of the frequency dependence of soil parameters on the lightning performance of transmission lines is addressed." This may seem somewhat disconnected from reality for many, since it is a problem involving electrical engineering optimization.

Could someone help me reproduce these calculations? I have made little significant progress.

If you want to access the reference accounts, I'll send you the PDF

schroeder2017 [link to copyrighted material replaced by moderator]

I'm evaulating Maple Flow and wondered if any Mathcad users have transferred to Maple Flow?

What are the pros/cons of Maple Flow? It's different to what I'm used to so I need to spend time learning. But I'm liking what I see so far.

Hi,
How can I simplify this relation(See uploaded .mw file)?
For example, the second term is simplified as: 

deltae*(1-phi0/(kappa-3/2))^(-kappa+1/2)+(1/2)*deltab*(1-sqrt(2)*sqrt(1/(m*ub^2))*sqrt(-phi0));

di1.mw

Where can I found details about Statistics:-Sample(..., method=envelope).

It would be nice to have a link to a description of the envelope method Sample uses.
For instance does it share some features of the Cuba library for numeric integration? Does it use the same envelope method evalf/Int(..., method=_CubaSuave)) uses?

Thanks in advance.

I'm trying to transform a partial differential equation (PDE) into an ordinary differential equation (ODE) as demonstrated in the paper. However, I find some steps confusing and difficult to follow. The process often feels chaotic, and managing the complexity of the equations is overwhelming. Could you suggest an effective and systematic method to handle such transformations more easily?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(Omega(x, t)); declare(U(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

(2)

tr := {t = tau, x = tau*c[0]+xi, Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))}

{t = tau, x = tau*c[0]+xi, Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))}

(3)

P1 := diff(Omega(x, t)^m, t)

Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)

(4)

L1 := PDEtools:-dchange(tr, P1, [xi, tau, U])

(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*(-((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*c[0]+I*U(xi)*(-k*c[0]+w+delta*(diff(W(tau), tau))-delta^2)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))

(5)
 

pde1 := I*(diff(Omega(x, t)^m, t))+alpha*(diff(Omega(x, t)^m, `$`(x, 2)))+I*beta*(diff(abs(Omega(x, t))^(2*n)*Omega(x, t)^m, x))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*(diff(Omega(x, t)^m, x))+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

I*Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)+alpha*(Omega(x, t)^m*m^2*(diff(Omega(x, t), x))^2/Omega(x, t)^2+Omega(x, t)^m*m*(diff(diff(Omega(x, t), x), x))/Omega(x, t)-Omega(x, t)^m*m*(diff(Omega(x, t), x))^2/Omega(x, t)^2)+I*beta*(2*abs(Omega(x, t))^(2*n)*n*(diff(Omega(x, t), x))*abs(1, Omega(x, t))*Omega(x, t)^m/abs(Omega(x, t))+abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t)+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

(6)

NULL

L1 := PDEtools:-dchange(tr, pde1, [xi, tau, U])

I*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*(-((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*c[0]+I*U(xi)*(-k*c[0]+w+delta*(diff(W(tau), tau))-delta^2)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+alpha*((U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m^2*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2/(U(xi)^2*(exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2)+(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(diff(U(xi), xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-(2*I)*(diff(U(xi), xi))*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-U(xi)*k^2*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))-(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2/(U(xi)^2*(exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2))+I*beta*(2*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*n*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*abs(1, U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m/(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))))+m*sigma*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*(diff(W(tau), tau)) = I*gamma*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+delta*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(4*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m

(7)

``

``

(8)

Download transform-pde-to-ode-hard_example.mw

I tried the latest Maple flow upgrade (2024.2) and noticed some strange behavior. When I enter units such as L/min or m/s^2, the program states: "invalid unit(s) Units:-Simple:-*" However, to my surprise, if I start the canvas by stating with(Units) everything works as it should. In the user manual however it is stated that the with() commands do not work within Flow. If someone would be so kind to explain what I am doing wrong.

Hello sir, how are you?
Sorry to bother you, I needed your help. I have the script from your textbook "3D Graph Equation of Motorcycle run on Maple Software". It's not working. I'd appreciate it if you could take a look.

with(plots);
implicitplot3d(((49.80*x + 19.44*y + 133.2300 - 19.08*sqrt(x^2 + 8.30*x + 19.8469 + y^2 + 3.24*y) - 66.6150*abs(-3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + 0.5625*abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2) = ((((((((((((2 + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(y^2 + 3.24)) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 3.24) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(y^2 - 3.18)) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 8.30) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 3.24)) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(y^2 + 3.24) + 0.42*abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2) and ((((((((((((2 + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(y^2 + 3.24)) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 3.24) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(y^2 - 3.18)) + abs(3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2))) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(x^2 + 8.30) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42) + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 8.30) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y - 2)*(x^2 + 3.24)) - 3.9*sqrt((x - 1.7)^2 + (y - 1.35)^2)) + 0.42 + abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2)*(y^2 + 3.24) + 0.42*abs(0.00390625*(x^8 + y^8) - 0.5*x + 2*y + 2) = 0, x = -7 .. 7, y = -4 .. 3, z = -3 .. 3, numpoints = 350000, style = surface, color = "Niagara Azure");

On donne une ellipse rapportée à ses axes x^2/a^2+y^2/b^2-1=0 et une droite (D) qui rencontre cette
courbe en 2 points A et B. 
On considère un cercle variable passant parles points A et B et on demande le lieu géométrique des points de rencontre des tangentes communes au cercle et à l'ellipse.
restart;
with(plots);
with(VectorCalculus);
a := 5;
b := 3;
ellipse_eq := (x, y) -> x^2/a^2 + y^2/b^2 - 1;
m := 1;
c := -2;
line_eq := (x, y) -> y - m*x - c;
intersections := solve({line_eq(x, y) = 0, ellipse_eq(x, y) = 0}, {x, y}, explicit);
A := intersections[1];
B := intersections[2];
A := [VectorCalculus:-`+`(VectorCalculus:-`*`(25, 17^VectorCalculus:-`-`(1)), VectorCalculus:-`*`(VectorCalculus:-`*`(15, sqrt(30)), 34^VectorCalculus:-`-`(1))), VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(9, 17^VectorCalculus:-`-`(1))), VectorCalculus:-`*`(VectorCalculus:-`*`(15, sqrt(30)), 34^VectorCalculus:-`-`(1)))];
B := [VectorCalculus:-`+`(VectorCalculus:-`*`(25, 17^VectorCalculus:-`-`(1)), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(15, sqrt(30)), 34^VectorCalculus:-`-`(1)))), VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(9, 17^VectorCalculus:-`-`(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(15, sqrt(30)), 34^VectorCalculus:-`-`(1))))];
center_x := VectorCalculus:-`*`(VectorCalculus:-`+`(A[1], B[1]), 2^VectorCalculus:-`-`(1));
center_y := VectorCalculus:-`*`(VectorCalculus:-`+`(A[2], B[2]), 2^VectorCalculus:-`-`(1));
radius := VectorCalculus:-`*`(sqrt(VectorCalculus:-`+`(VectorCalculus:-`+`(A[1], VectorCalculus:-`-`(B[1]))^2, VectorCalculus:-`+`(A[2], VectorCalculus:-`-`(B[2]))^2)), 2^VectorCalculus:-`-`(1));
circle_eq := (x, y) -> (x - center_x)^2 + (y - center_y)^2 - radius^2;
L := (x1, y1, x2, y2, lambda1, lambda2) -> (x1 - x2)^2 + (y1 - y2)^2 + lambda1*ellipse_eq(x1, y1) + lambda2*circle_eq(x2, y2);
eq1 := diff(L(x1, y1, x2, y2, lambda1, lambda2), x1);
eq2 := diff(L(x1, y1, x2, y2, lambda1, lambda2), y1);
eq3 := diff(L(x1, y1, x2, y2, lambda1, lambda2), x2);
eq4 := diff(L(x1, y1, x2, y2, lambda1, lambda2), y2);
eq5 := ellipse_eq(x1, y1);
eq6 := circle_eq(x2, y2);
sols := solve({eq1, eq2, eq3, eq4, eq5, eq6}, {lambda1, lambda2, x1, x2, y1, y2}, explicit);
sols;
lieu_geometrique := [seq([sols[i][1], sols[i][2]], i = 1 .. nops(sols))];
plot(lieu_geometrique, style = point, symbol = cross, color = red, title = "Lieu géométrique des points de rencontre");
Ce code m'a été donné en partie par l'intelligence artificielle (Mistral), mais il se plante. Pourriez-vous corriger les erreurs. Merci.

I am trying to animate images generated in a do loop using display and insequence. I get an output but there is no flipping of the image even while I see the frames count flip through the frames. What am I doing wrong? See attached code. Thanks!

Why_cant_I_animate_still_images_like_this.mw

Hey guys, 

in the attached file you can see my problem. Since Maple was not able to calculate my set with 8 equations, 8 variables and 13 inequalities I had to split in into two steps. Here you can see how I try to take one solutions of what I got with solve onto 8 equations with 8 variables and to solve this together with my inequalities. It never was a problem before. So ow I get a weird error I dont understand.

restart; inequalities := {0 < k, 0 < m, 0 < s, 0 < x, 0 < y, 0 < n+(p-1)*s, 0 < (m*y-1)*n+(m*x-m+1)*(1-p), 0 < (m*x-m-s+1)*p+m*y*(s-n), 1 < x+y, k < 1, m < 1, s < t, t < 1}; solve(`union`({k = (x*(1-sqrt(x))+sqrt(x)-2*x)/((x^2-3*x+1)*x), m = (sqrt(x)+x)/(x-1), n = (sqrt(x)+x)/(x-1), p = (-1-sqrt(x))/(x-1), s = (-1-sqrt(x))/(x-1), t = (2*x*(1-sqrt(x))+1+sqrt(x)-5*x)/(x^2-3*x+1), y = 1-sqrt(x)}, inequalities)); inequalities := {0 < k, 0 < m, 0 < s, 0 < x, 0 < y, 0 < n+(p-1)*s, 0 < (m*y-1)*n+(m*x-m+1)*(1-p), 0 < (m*x-m-s+1)*p+m*y*(s-n), 1 < x+y, k < 1, m < 1, s < t, t < 1}

Error, (in unknown) invalid input: SolveTools:-Inequality expects its 1st argument, eqns, to be of type {list, set}({`<`, `<=`, `=`}), but received [p < 1, -p < 0, And(2*argument((p-1)/p) <= Pi,-Pi < 2*argument((p-1)/p))]

 

restart; solve(`union`({k = (x*(1-sqrt(x))+sqrt(x)-2*x)/((x^2-3*x+1)*x), m = (sqrt(x)+x)/(x-1), n = (sqrt(x)+x)/(x-1), p = (-1-sqrt(x))/(x-1), s = (-1-sqrt(x))/(x-1), t = (2*x*(1-sqrt(x))+1+sqrt(x)-5*x)/(x^2-3*x+1), y = 1-sqrt(x)}, {0 < x, 0 < y}))

{k = p^3/(p^3-2*p+1), m = -p+1, n = -p+1, s = p, t = (3*p-2)*p/(p^2+p-1), x = (p^2-2*p+1)/p^2, y = 1-((p^2-2*p+1)/p^2)^(1/2), 3/2+(1/2)*5^(1/2) < p}, {k = p^3/(p^3-2*p+1), m = -p+1, n = -p+1, s = p, t = (3*p-2)*p/(p^2+p-1), x = (p^2-2*p+1)/p^2, y = 1-((p^2-2*p+1)/p^2)^(1/2), 1 < p, p < 3/2+(1/2)*5^(1/2)}, {k = p^3/(p^3-2*p+1), m = -p+1, n = -p+1, s = p, t = (3*p-2)*p/(p^2+p-1), x = (p^2-2*p+1)/p^2, y = 1-((p^2-2*p+1)/p^2)^(1/2), 1/2 < p, p < (1/2)*5^(1/2)-1/2}, {k = p^3/(p^3-2*p+1), m = -p+1, n = -p+1, s = p, t = (3*p-2)*p/(p^2+p-1), x = (p^2-2*p+1)/p^2, y = 1-((p^2-2*p+1)/p^2)^(1/2), p < 1, (1/2)*5^(1/2)-1/2 < p}

(1)

restart; solve(`union`({k = (x*(1-sqrt(x))+sqrt(x)-2*x)/((x^2-3*x+1)*x), m = (sqrt(x)+x)/(x-1), n = (sqrt(x)+x)/(x-1), p = (-1-sqrt(x))/(x-1), s = (-1-sqrt(x))/(x-1), t = (2*x*(1-sqrt(x))+1+sqrt(x)-5*x)/(x^2-3*x+1), y = 1-sqrt(x)}, {0 < s, 0 < x, 0 < y}))

Error, (in unknown) invalid input: SolveTools:-Inequality expects its 1st argument, eqns, to be of type {list, set}({`<`, `<=`, `=`}), but received [-p < 0, And(2*argument((p-1)/p) <= Pi,-Pi < 2*argument((p-1)/p))]

 
 

NULL

So my question is why does this error occur? And what does it mean? the "but received..." argument in the error makes no sense to me. Why does it happen when I add 0<s but 0<x,0<y is okay?

Thank you in advance

Download Why_this_error.mw

Is it possible in maple to resume an asymptotic expansion from a specific order onwards.

To be more specific.

Let's assume that I have the asymptotic expansion to say Order 20 already calculated or can import it from file.

Is it possible for Maple to use the expansion I already have and immediately start calculating Order 21 onwards ?

This will save a lot of time for numerical  expansions that can take literally days to complete.

I try to get some Bilinear form for some PDE equation  and already i have algorithm by writing in lecture but i can't apply i don't what is mistake i did, and i didn't seen some of this lecture code in maple  like (myint(expr,var))
 i  do upload PIcture of algorithm and example which they get Bilinear form 

Bilinear.mw

thanks for any help

First 10 11 12 13 14 15 16 Last Page 12 of 361