Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

minimize((x+y)^2+cos(y)^2, x=-4..4, y=-2..2);  # cos(2)^2    should be 0
minimize((x+y)^2+cos(y), x=-4..4, y=-4..4);      
  
Error, (in unknown) mapped procedure in `ormap' must return true or false
minimize((x+y)^2+cos(y));                                   # infinity   ?!  should be -1

Edited. Corrected second example

with(DEtools):
phaseportrait([secret], [a(t), b(t), c(t)], t = -2 .. 2, [[a(0) = 1, b(0) = 0, c(0) = 2]], stepsize = 0.5e-1, scene = [c(t), a(t)], linecolour = sin((1/2)*t*Pi), method = classical[foreuler]);

Error, (in DEtools/phaseportrait) the ODE system does not contain derivatives of the unknown function a

Hello

I am a student of an engineering career

The math teacher is going to ask us to solve some exercises Matlab

The teacher is very hard and explains nothing of Matlab in class

We must learn to use the program on our own viewing internet watching tutorials

I was wondering if somebody could help solve some exercises.

Are only three exercises which are imposible to me

I would appreciate it greatly.

Thank you

My e-mail :

alessagosti1@gmail.com

This question is related to the recent post
http://www.mapleprimes.com/questions/211460-Series-Of-Bessel-Functions

1. Consider the following fast convergent series:

f:=n->(-1)^(n+1)*1/(n+exp(n));
S1:=Sum(f(n),n=1..infinity);
evalf(S1);
S2:=Sum(f(2*n-1)+f(2*n),n=1..infinity);
evalf(S2);

As expected, the sum of the series is obtained very fast (with any precision), same results for S1 and S2.


2. Now change the series to a very slowly convergent one:

f:=n->(-1)^(n+1)/sqrt(n+sqrt(n));

evalf(S1) is computed also extremely fast, because the acceleration algorithm works here perfectly.
But evalf(S2) demonstrates a bug:

Error, (in evalf/Sum1) invalid input: `evalf/Sum/infinite` expects its 2nd argument, ix, to be of type name, but received ...


3. Let us take another series:

f:=n->(-1)^(n+1)/sqrt(n+sqrt(n)*sin(n));

Now evalf(S1) does not evaluate numerically and evalf(S2) ==> same error.
Note that I do not know whether this series is convergent or not, but the same thing happens for the obviously convergent series

f:=n->(-1)^(n+1)/sqrt(n^(11/5)+n^2*sin(n));

(because it converges slowly (but absolutely) and the acceleration fails).
I would be interested to know a method to approximate (in Maple) the sum of such series.

Edit. Now I know that the mentioned series 

converges (but note that Leibniz' test cannot be used).

Hello,

I have .mla. package and I would like to create the source code associated to this package.

In the past, you have also help me to obtain the source code of procedure of the module.

Here the post where Carl Love has helped me :

http://www.mapleprimes.com/questions/203676-Open-A-Maple-Package

How can I do to create the complete source code of package directly ?

Is there a direct way enabling to not have to read one procedure by one procedure but to obtain the code source for all the package ?

Thank you for your help

 

 

Environment: Maple2015, MATLAB_R2014b(MacOSX10.8.5), 2015b(MacOSX10.11.4)

MapleToolbox2015.1MacInstaller.app was successfully completed (log tells us), but when MATLAB were booted, following error messages appeared and symbolic operations of maple failed. 

This would be closely related to maple installation on MATLAB as such errors never occur for clean install of MATLABs and looks independent on OSX versions. Now javaforosx.dmg in use by instruction of Maplesoft.  Something wrong is in Maple2015. Note maple-MATLAB link works normally.

Please provide us with direction of how to fix it hopefully by Maplesoft professionals.

 

(Quote of MATLAB command window display)

Exception in thread "Startup Class Loader" java.lang.UnsatisfiedLinkError: jogamp.common.os.MachineDescriptionRuntime.getPointerSizeInBytesImpl()I

at jogamp.common.os.MachineDescriptionRuntime.getPointerSizeInBytesImpl(Native Method)

at jogamp.common.os.MachineDescriptionRuntime.getRuntimeImpl(MachineDescriptionRuntime.java:138)

at jogamp.common.os.MachineDescriptionRuntime.getRuntime(MachineDescriptionRuntime.java:124)

at com.jogamp.common.os.Platform.<clinit>(Platform.java:228)

at javax.media.opengl.GLProfile.<clinit>(GLProfile.java:83)

at com.mathworks.hg.peer.JavaSceneServerPeer.initializeJOGL(JavaSceneServerPeer.java:114)

at com.mathworks.hg.peer.JavaSceneServerPeer.<clinit>(JavaSceneServerPeer.java:100)

at java.lang.Class.forName0(Native Method)

at java.lang.Class.forName(Class.java:190)

at com.mathworks.mde.desk.StartupClassLoader.loadClass(StartupClassLoader.java:258)

at com.mathworks.mde.desk.StartupClassLoader.access$900(StartupClassLoader.java:25)

at com.mathworks.mde.desk.StartupClassLoader$2.run(StartupClassLoader.java:244)

at java.lang.Thread.run(Thread.java:745)

>> maple();

error: maple (line 178)

Invalid MEX-file '/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64':

dlopen(/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64, 6): Symbol not found: ___sincos_stret

  Referenced from: /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

  Expected in: /usr/lib/libSystem.B.dylib

 in /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

>> syms x  y

error: sym (line 186)

Invalid MEX-file '/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64':

dlopen(/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64, 6): Symbol not found: ___sincos_stret

  Referenced from: /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

  Expected in: /usr/lib/libSystem.B.dylib

 in /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

 error: sym (line 56)

           assignin('caller',varargin{i},sym(varargin{i})); 

(Unquote)

 

 

 

I've got the following:

Integral_over_region.mw

M_Iwaniuk

 

For the last 24hrs or so I have found it almost impossible to upload worksheet files in response to questions.

My usual approach is

Big green up-arrow:
(uploader pop-up appears)

Browse files

(this still works)

Upload file

This is the problem step - I generally just get "waiting for Mapleprimes" in my browser's annunciator box: and I wait, and wait, (as in >5 minutes) and still this step does not complete. Just to be annoying, every once in a while the file will upload as normal, such but success is now the exception

I'm seeing the same issue in Firefox 45.0.2 and Chrome 50.0.2661.75mon Win 7, 64-bit.

Anyone else seeing the same issue?

 

 

Dear Maple researchers

 

I have a problem in solving a system of odes that resulted from discretizing, in space variable, method of lines (MOL).

The basic idea of this code is constructed from the following paper:

http://www.sciencedirect.com/science/article/pii/S0096300313008060

If kindly is possible, please tell me whas the solution of this problem.

With kin dregards,

Emran Tohidi.

My codes is here:

> restart;
> with(orthopoly);
print(`output redirected...`); # input placeholder
> N := 4; Digits := 20;
print(`output redirected...`); # input placeholder

> A := -1; B := 1; rho := 3/4;
> g1 := proc (t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(A-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc; g2 := proc (t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(B-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> f := proc (x) options operator, arrow; 1/2+(1/2)*tanh((1/2)*x/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> uexact := proc (x, t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(x-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> basiceq := simplify(diff(uexact(x, t), `$`(t, 1))-(diff(uexact(x, t), `$`(x, 2)))+uexact(x, t)*(1-uexact(x, t))*(rho-uexact(x, t)));
print(`output redirected...`); # input placeholder
                                      0
> alpha := 0; beta := 0; pol := P(N-1, alpha+1, beta+1, x); pol := unapply(pol, x); dpol := simplify(diff(pol(x), x)); dpol := unapply(dpol, x);
print(`output redirected...`); # input placeholder
> nodes := fsolve(P(N-1, alpha+1, beta+1, x));
%;
> xx[0] := -1;
> for i to N-1 do xx[i] := nodes[i] end do;
print(`output redirected...`); # input placeholder
> xx[N] := 1;
> for k from 0 to N do h[k] := 2^(alpha+beta+1)*GAMMA(k+alpha+1)*GAMMA(k+beta+1)/((2*k+alpha+beta+1)*GAMMA(k+1)*GAMMA(k+alpha+beta+1)) end do;
print(`output redirected...`); # input placeholder
> w[0] := 2^(alpha+beta+1)*(beta+1)*GAMMA(beta+1)^2*GAMMA(N)*GAMMA(N+alpha+1)/(GAMMA(N+beta+1)*GAMMA(N+alpha+beta+2));
print(`output redirected...`); # input placeholder
> for jj to N-1 do w[jj] := 2^(alpha+beta+3)*GAMMA(N+alpha+1)*GAMMA(N+beta+1)/((1-xx[jj]^2)^2*dpol(xx[jj])^2*factorial(N-1)*GAMMA(N+alpha+beta+2)) end do;
print(`output redirected...`); # input placeholder
> w[N] := 2^(alpha+beta+1)*(alpha+1)*GAMMA(alpha+1)^2*GAMMA(N)*GAMMA(N+beta+1)/(GAMMA(N+alpha+1)*GAMMA(N+alpha+beta+2));
print(`output redirected...`); # input placeholder
> for j from 0 to N do dpoly1[j] := simplify(diff(P(j, alpha, beta, x), `$`(x, 1))); dpoly1[j] := unapply(dpoly1[j], x); dpoly2[j] := simplify(diff(P(j, alpha, beta, x), `$`(x, 2))); dpoly2[j] := unapply(dpoly2[j], x) end do;
print(`output redirected...`); # input placeholder
print(??); # input placeholder
> for n to N-1 do for i from 0 to N do BB[n, i] := sum(P(jjj, alpha, beta, xx[jjj])*dpoly2[jjj](xx[n])*w[i]/h[jjj], jjj = 0 .. N) end do end do;
> for n to N-1 do d[n] := BB[n, 0]*g1(t)+BB[n, N]*g2(t); d[n] := unapply(d[n], t) end do;
print(`output redirected...`); # input placeholder
> for nn to N-1 do F[nn] := simplify(sum(BB[nn, ii]*u[ii](t), ii = 1 .. N-1)+u[nn](t)*(1-u[nn](t))*(rho-u[nn](t))+d[nn](t)); F[nn] := unapply(F[nn], t) end do;
print(`output redirected...`); # input placeholder
> sys1 := [seq(d*u[q](t)/dt = F[q](t), q = 1 .. N-1)];
print(`output redirected...`); # input placeholder
[d u[1](t)                                                                
[--------- = 40.708333333333333334 u[1](t) + 52.190476190476190476 u[2](t)
[   dt                                                                    

                                                                  2          3
   + 39.958333333333333334 u[3](t) - 1.7500000000000000000 u[1](t)  + u[1](t)

   + 7.3392857142857142858

   - 3.6696428571428571429 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) - 3.6696428571428571429 tanh(
                                                     d u[2](t)   
-0.35355339059327376220 + 0.12500000000000000000 t), --------- =
                                                        dt       
-20.416666666666666667 u[1](t) - 25.916666666666666667 u[2](t)

                                                                  2          3
   - 20.416666666666666667 u[3](t) - 1.7500000000000000000 u[2](t)  + u[2](t)

   - 3.7500000000000000000

   + 1.8750000000000000000 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) + 1.8750000000000000000 tanh(
                                                     d u[3](t)                
-0.35355339059327376220 + 0.12500000000000000000 t), --------- = 29.458333333\
                                                        dt                    

  333333333 u[1](t) + 38.476190476190476190 u[2](t)

                                                                  2          3
   + 30.208333333333333333 u[3](t) - 1.7500000000000000000 u[3](t)  + u[3](t)

   + 5.4107142857142857144

   - 2.7053571428571428572 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) - 2.7053571428571428572 tanh(
                                                   ]
-0.35355339059327376220 + 0.12500000000000000000 t)]
                                                   ]
> ics := seq(u[qq](0) = evalf(f(xx[qq])), qq = 1 .. N-1);
print(`output redirected...`); # input placeholder
    u[1](0) = 0.38629570659055483825, u[2](0) = 0.50000000000000000000,

      u[3](0) = 0.61370429340944516175
> dsolve([sys1, ics], numeic);
%;
Error, (in dsolve) invalid input: `PDEtools/sdsolve` expects its 1st argument, SYS, to be of type {set({`<>`, `=`, algebraic}), list({`<>`, `=`, algebraic})}, but received [[d*u[1](t)/dt = (20354166666666666667/500000000000000000)*u[1](t)+(13047619047619047619/250000000000000000)*u[2](t)+(19979166666666666667/500000000000000000)*u[3](t)-(7/4)*u[1](t)^2+u[1](t)^3+36696428571428571429/5000000000000000000-(36696428571428571429/10000000000000000000)*tanh(1767766952966368811/5000000000000000000+(1/8)*t)-(36696428571428571429/10000000000000000000)*tanh(-1767766952966368811/5000000000000000000+(1/8)*t), d*u[2](t)/dt = -(20416666666666666667/1000000...

I am currently working on FDM ,i have 2 coupled nonlinear pde ,i need help in solving these equation using maple code.

> restart:

> alias(f=f(tau,eta), theta=theta(tau,eta));

 

>

 

> PDE1:=S*diff(f,tau,eta)=eta^2*diff(f,eta)^2+(6*eta^2-2*f*eta)*diff(f,eta)+(6*eta^3-f*eta)*diff(f,eta,eta)-eta^4*diff(f,eta,eta,eta);

 

> PDE2:=eta^4*diff(theta,eta,eta)+2*eta^3*diff(theta,eta)-Pr*(f*eta^2*diff(theta,eta)+S*diff(theta,tau))=0;

 

The code I write is properly indented.  The operation of pasting it here strips the white space and makes it hard for the reader to comprehend the structure. Manually restoring the appropriate indentation is doable but tedious, made more so because the characters we see here are in a variable width font.  The rationale might be that, given a variable width font the indentation is going to be inconsistent, but that isn't the case if the preformatted style is used, which I do, for code.

Is there any way to turn off the white space stripping?  Presumably this is some ridiculous xml-based processing feature.

 

I want to solve system of non linear odes numerically.

I encounter following error

Error, (in dsolve/numeric/bvp) cannot determine a suitable initial profile, please specify an approximate initial solution

how to correct it

regards

Is it possible to view maple workbook content in older versions?

Hello everyone,

I am trying to solve numerically int( f(t,z) , t=0..T ) = 0 , in z for a cumbersome f.

I tried z1=fsolve( int( f(t,z) , t=0..T ) = 0 , z). But then I tried int( f(t,z1) , t=0..T ) and the result is clearly not zero nor anything small.

It looks like Maple evaluates analytically the integral, and does it wrong (check this for more details) so fsolve uses the wrong equations.

Anyone knows how I can force Maple to evaluate numerically the integral at each step of the fsolve function?

Thank you!

hi,i am studying the maple most recent.But when calculating function integral,I ran into trouble.I hope to get your help.Here is the code I wrote, but it runs a very long time. How to effectively reduce the integration time?

restart;
with(student);
assume(n::integer);
Fourierf := proc (sigma, a, b, N) local A, A0, B, T, S, Ff; T := b-a; A0 := int(sigma, t = a .. b); A := int(sigma*sin(n*Pi*t/T), t = a .. b); B := int(sigma*cos(n*Pi*t/T), t = a .. b); S := sum(A*sin(n*Pi*t/T)+B*cos(n*Pi*t/T), n = 1 .. N)+(1/2)*A0; Ff := unapply(S, t) end proc;

f := proc (t) options operator, arrow; piecewise(t < .13*2.6 and 0 <= t, 100*t/(.13*2.6), .13*2.6 <= t and t < 2.6, 100, 2.6 <= t and t < 2.6*1.1, 0) end proc;

sigma := f(t);
a := 0;
b := 1.1*2.6;
s1 := unapply((Fourierf(sigma, a, b, 500))(t)/uw0, t);

s2 := unapply((Fourierf(sigma, a, b, 500))(t)/ua0, t);
A1 := (2*n+1)^2*Pi^2*(C3+1+sqrt(4*C1*C2*C3+C3^2-2*C3+1))/(8*C1*C2-8);
A2 := (2*n+1)^2*Pi^2*(C3+1-sqrt(4*C1*C2*C3+C3^2-2*C3+1))/(8*C1*C2-8);
g := -C2*Cww*(diff(s1(x), `$`(x, 2)))+Caa*(diff(s2(x), `$`(x, 2))+(n+1/2)^2*Pi^2*(diff(s2(x), x)));
f1 := -(1/2)*(n+1/2)^2*Pi^2*sqrt(4*C1*C2*C3+C3^2-2*C3+1)+C2*Cww*((D@@1)(s1))(0)-Caa*((D@@1)(s2))(0)+(n+1/2)^2*Pi^2*(C2-(1/2)*C3+1/2);

CN := ((2*(int(exp(-A1*x)*g, x = 0 .. t)-f1))*exp(A1*t)-(2*(int(exp(-A2*x)*g, x = 0 .. t)-f1))*exp(A2*t))/((n+1/2)^3*Pi^3*sqrt(4*C1*C2*C3+C3^2-2*C3+1));
ua := sum(CN*sin((n+1/2)*Pi*z), n = 0 .. 100);

 

 

First 191 192 193 194 195 196 197 Last Page 193 of 361