Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

I have a problem about the integration of a function. The maple returns mathematical form of the given command

the function is

fn :=(-4.079067798*10^(-16)+3.422708023*10^(-16)*I)*(3.363377947*10^(-11)+5.977507284*10^(-12038)*I+(3.363377947*10^(-11)+4.678081798*10^(-22)*I)*erf(1.664331698*10^15*qq-0.2503507367e-1-4.649313602*I)) *exp(-2.77*(qq/(tau*tau))^2)*exp(-I*w0*qq)*exp(-(ss-qq)/T_pop)

qq is the integration variable qq=-inf..ss

w0=10^15

tau=10^(-15)

T_pop=30e-15

Hi everyone,

I am trying to solve the equation of heat tranfer, time dependent, with particular Initial and boundary conditions but I am stuck by technical problems both in getting an analytical solution and a numerical one.

The equation

the equation.

I defined a and b numerically. domain is : and I defined surf_power numerically.

The initial condition is : , T0 defined numerically

The boundary condition is : , because it has a shperical symetry.

To me, it looks like a well posed problem. Does it look fine ?

Problem in analytical solution :

It doesn't accept the boundary condition so I only input the initial condition and it actually gives me back an expression that can be evaluated but it never does : I can't reduce it more than an expression of fourier which I can't eval. The solution :
The solution calculated in (0,0). I was hoping T0...

Are you familiar with these problems ? What would be the perfect syntax you would use to solve this ?

The numerical solution problems :

Sometimes it tells me that my boundary condition is equivalent  to 0 = 0, and I don't see why. Some other times it tells me I only gave 1 boundary/initial condition even if I wrote both. Here is what I wrote for example :

(because it kept asking me to add these two options : 'time' and 'range')

Are you familiar with these problems ? What would be the perfect syntax you would use to solve this ? I must at least have syntax problems because even if I keep reading the Help, it's been a long time since I used Maple.

Thank very much for any indication you could give me !

Simon

Hello Mapleprime members

 

I am having an issue with a Maple script I have written that reads in a separate Maple script at the start of the code which deals with regular Jacobian transformations I apply to the problem and got tired writing it each time so externalised it and read it in each time.

On Maple 2015 on my Mac there is nothing wrong with the script and it runs without issue.

 

When I run it on Maple 17 on my linux machine It says the read in file does not exist and the only difference between both machines is the home directory path. (or perhaps version of Maple, but I have used thew following commands in older Maple versions)

 

The Maple script has this at the top:

cwd:=currentdir():

home:=getenv("HOME");
Expspath:=cat(home,"Pathway to the file to be read in");
currentdir(Expspath);

I am simply getting Maple to find the home directory and apply it to the start of the file path which i thought would universally work between machines, and allow the running of Maple scripts between operating systems.

When I run the program on the linux Maple 17, printing Expspath from above gives  exactly where the file is located as it finds the home directory correctly and uses the correct filepath, it just says it does not exist. is there something obvious I am missing?

The Maple file to be read in is on Dropbox so just after the home directory is /Dropbox. If that makes any difference. In both instances the file path is where the file is located (exact match) but the mac will read in the file and linux says it does not exist even though it is the correct filepath.

 

Any help would be appreciated

 

- Yeti

 

Consider the following function.

f (x) = ( x3 − 442x2 + 65107x − 3196058) e1/x 

f:=x->(x^3-442*x^2+65107*x-3196058)*exp(1/x); 
Use Newton's method to find all 3 roots (correct to at least 6 decimal places) of f (x). (Note that you might have to increase the 'Digits' variable to 15, i.e., Digits:=15, in order to get the required accuracy.)

 my answer are 143.2030067,143.2030339,143.2030610

but, it is wrong. can anyone tell me where is the wrong part?

please!!

I am attempting to solve a system of second order ODEs. I place conditions on the solutions and use the solve command to figure the correct constants for the general solutions of the ODEs; however, the conditions do not appear to hold after I substitute the constants back into the general solutions. Any help would be greatly appreciated. Here's the code and an explanation:

First some constants

> A := 1; B := 9/10;
> j := 1-1/B;

 This is our homogeneous odes. I will give the general solutions of the inhomogeneous system momentarily 

> eqnv1 := diff(v1(x), `$`(x, 2)) = (1-1/(j+1))*v1(x)+v2(x)/(j+1);
> eqnv2 := diff(v2(x), `$`(x, 2)) = -v1(x)/(A*(j+1))+(B/A+1/(A*(j+1)))*v2(x);

Next we get the general solution of this sytem of odes.

> soln := dsolve([eqnv1, eqnv2])

Next we have our solutions of the inhomogeneous problem1. Basically solution v1neg, v2neg on [0,xi] and v1pos, v2pos on [xi,1]. We will assume v1,v2 are C^1 across xi; however, the location of xi is not known at this time so they must remain split.

> v1neg := op([1, 2], soln)-1;
> v2neg := op([2, 2], soln)-1/B;
> v1pos := op([1, 2], soln)+1;
> v2pos := op([2, 2], soln)+1/B;

There's probably a better way to do this, but I relabeled the constants:

> v1negc := subs([_C1 = a[1], _C2 = a[2], _C3 = a[3], _C4 = a[4]], v1neg);
> v2negc := subs([_C1 = a[1], _C2 = a[2], _C3 = a[3], _C4 = a[4]], v2neg);
>
> v1posc := subs([_C1 = a[5], _C2 = a[6], _C3 = a[7], _C4 = a[8]], v1pos);
> v2posc := subs([_C1 = a[5], _C2 = a[6], _C3 = a[7], _C4 = a[8]], v2pos);

Next we have eight conditions the solutions must satisfy. Namely v1, v2 are C^1 across xi and v1',v2' are 0 at {0,1}.

> syscon1 := subs(x = xi, v1negc) = subs(x = xi, v1posc);
> syscon2 := subs(x = xi, v2negc) = subs(x = xi, v2posc);
> syscon3 := subs(x = xi, diff(v1negc, x)) = subs(x = xi, diff(v1posc, x));
> syscon4 := subs(x = xi, diff(v2negc, x)) = subs(x = xi, diff(v2posc, x));
> syscon5 := subs(x = 0, diff(v1negc, x)) = 0;
> syscon6 := subs(x = 0, diff(v2negc, x)) = 0;
> syscon7 := subs(x = 1, diff(v1posc, x)) = 0;
> syscon8 := subs(x = 1, diff(v2posc, x)) = 0;

We solve to get the constants for the solutions.

> constants := simplify(evalf(solve({syscon1, syscon2, syscon3, syscon4, syscon5, syscon6, syscon7, syscon8}, {a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]})));
>

We substitute the values for the constants.


> a[1] := op([1, 2], constants); a[2] := op([2, 2], constants); a[3] := op([3, 2], constants); a[4] := op([4, 2], constants); a[5] := op([5, 2], constants); a[6] := op([6, 2], constants); a[7] := op([7, 2], constants); a[8] := op([8, 2], constants);

Lastly we try to verify that the conditions from earlier hold:

> evalf(subs(xi = .2, subs(x = xi, v1negc-v1posc)));
-1.7597825261536669519
> evalf(subs(xi = .2, subs(x = xi, v2negc-v2posc)));
-1.8936659961101033997
> evalf(subs([x = 0, xi = .2], diff(v1negc, x)));
-0.38633519704430619686

They should hold for any xi, but they don't appear to. All of these should be 0. For a large xi, the numbers get very large so I was thinking perhaps roundoff error, but even when I do an exact solution and then evalf just at the end, I still have large error so I'm not sure what the problem is. Sorry for the long question. Thanks so much for the help.

Hi

Anyone could help me in solving the following system of equations to get constants C1, C2, C3 and C4. MALPE give me this "soution may have been lost".  The MAPLE sheet is also attached.

 

restart:

Eq1:=simplify(C3*exp(-(1/4)*(C2*(x^2-2*0)+sqrt(C2*(x^2-2*0)^2+4*M*(x^2-2*0)*w1*(x^2-2*0)))/w1)+C4*exp((1/4)*(-C2*(x^2-2*0)+sqrt(C2*(x^2-2*0)^2+4*M*(x^2-2*0)*w1*(x^2-2*0)))/w1)-U) = 0;

C3*exp(-(1/4)*(C2*x^2+(x^4*(4*M*w1+C2))^(1/2))/w1)+C4*exp(-(1/4)*(C2*x^2-(x^4*(4*M*w1+C2))^(1/2))/w1)-U = 0

(1)

Eq2:=simplify(exp(-(1/4)*(C2+sqrt(C2^2+4*M*w1))*(x^2-2*0)/w1)*C3*x+exp((1/4)*(-C2+sqrt(C2^2+4*M*w1))*(x^2-2*0)/w1)*C4*x+C2-V-z) = 0;

exp(-(1/4)*(C2+(C2^2+4*M*w1)^(1/2))*x^2/w1)*C3*x+exp(-(1/4)*(C2-(C2^2+4*M*w1)^(1/2))*x^2/w1)*C4*x+C2-V-z = 0

(2)

Eq3:=simplify((-2*w2*w5*ln(C3*exp(-(1/2)*sqrt(w2*w4*(w2*w4+w3*w6))*C2*(x^2-2*0)/(w2*w4*w5))-C4)*sqrt(w2*w4*(w2*w4+w3*w6))+w2*w5*(-w2*w4+sqrt(w2*w4*(w2*w4+w3*w6)))*ln(exp(-(1/2)*sqrt(w2*w4*(w2*w4+w3*w6))*C2*(x^2-2*0)/(w2*w4*w5)))+C1*w3*w6*sqrt(w2*w4*(w2*w4+w3*w6)))/(sqrt(w2*w4*(w2*w4+w3*w6))*w3*w6)-1)= 0;

(-ln(exp(-(1/2)*(w2*w4*(w2*w4+w3*w6))^(1/2)*C2*x^2/(w2*w4*w5)))*w2^2*w4*w5+C1*w3*w6*(w2*w4*(w2*w4+w3*w6))^(1/2)-2*w2*w5*ln(C3*exp(-(1/2)*(w2*w4*(w2*w4+w3*w6))^(1/2)*C2*x^2/(w2*w4*w5))-C4)*(w2*w4*(w2*w4+w3*w6))^(1/2)+ln(exp(-(1/2)*(w2*w4*(w2*w4+w3*w6))^(1/2)*C2*x^2/(w2*w4*w5)))*(w2*w4*(w2*w4+w3*w6))^(1/2)*w2*w5-(w2*w4*(w2*w4+w3*w6))^(1/2)*w3*w6)/((w2*w4*(w2*w4+w3*w6))^(1/2)*w3*w6) = 0

(3)

Eq4:= simplify((-C2*x^2*w2*w4-.50*C2*x^2*w3*w6+sqrt(w2*w4*(w2*w4+w3*w6))*C2*x^2+2.*w2*w4*w5*ln(w3^4*w6^2*(C3^2*exp(-1.0*sqrt(w2*w4*(w2*w4+w3*w6))*C2*x^2/(w2*w4*w5))-2*C3*exp(-.5*sqrt(w2^2*w4^2+w2*w3*w4*w6)*C2*x^2/(w2*w4*w5))*C4+C4^2)/(w2*w4*(w2*w4+w3*w6)*C2^2))-5.544000000*w2*w4*w5-w3^2*w6)/(w3^2*w6)) = 0;

(-C2*x^2*w2*w4-.5000000000*C2*x^2*w3*w6+(w2*w4*(w2*w4+w3*w6))^(1/2)*C2*x^2+2.*w2*w4*w5*ln(w3^4*w6^2*(C3^2*exp(-(w2*w4*(w2*w4+w3*w6))^(1/2)*C2*x^2/(w2*w4*w5))-2.*C3*exp(-.5*(w2*w4*(w2*w4+w3*w6))^(1/2)*C2*x^2/(w2*w4*w5))*C4+C4^2)/(w2*w4*(w2*w4+w3*w6)*C2^2))-5.544000000*w2*w4*w5-w3^2*w6)/(w3^2*w6) = 0

(4)

solve({Eq1, Eq2, Eq3,Eq4}, {C1, C2, C3,C4});

Warning, solutions may have been lost

 

``

``

Download solution_lost.mw

 

 

Hi all,

I have this system

> system1D := H = alpha*gamma[2, 2]*d[2, 1]-beta*d[1, 2]*gamma[1, 2]^2-gamma*d[1, 2]*gamma[2, 1]^2+alpha*gamma[2, 2]^2*d[2, 2]-beta*d[2, 2]*gamma[2, 2]^2-gamma*d[2, 2]*gamma[2, 2]^2, E = alpha*gamma[2, 1]*d[1, 1]-beta*d[1, 2]*gamma[1, 1]-gamma*d[1, 1]*gamma[2, 1]+alpha*gamma[2, 1]^2*d[1, 2]-beta*d[2, 2]*gamma[2, 1]-gamma*d[2, 1]*gamma[2, 2], B = alpha*gamma[1, 1]*d[2, 1]-beta*d[1, 1]*gamma[1, 1]^2-gamma*d[1, 1]*gamma[1, 1]^2+alpha*gamma[1, 1]^2*d[2, 2]-beta*d[2, 1]*gamma[2, 1]^2-gamma*d[2, 1]*gamma[1, 2]^2, D = alpha*gamma[1, 2]*d[2, 1]-beta*d[1, 1]*gamma[1, 2]^2-gamma*d[1, 2]*gamma[1, 1]^2+alpha*gamma[1, 2]^2*d[2, 2]-beta*d[2, 1]*gamma[2, 2]^2-gamma*d[2, 2]*gamma[1, 2]^2, A = alpha*gamma[1, 1]*d[1, 1]-beta*d[1, 1]*gamma[1, 1]-gamma*d[1, 1]*gamma[1, 1]+alpha*gamma[1, 1]^2*d[1, 2]-beta*d[2, 1]*gamma[2, 1]-gamma*d[2, 1]*gamma[1, 2], C = alpha*gamma[1, 2]*d[1, 1]-beta*d[1, 1]*gamma[1, 2]-gamma*d[1, 2]*gamma[1, 1]+alpha*gamma[1, 2]^2*d[1, 2]-beta*d[2, 1]*gamma[2, 2]-gamma*d[2, 2]*gamma[1, 2], F = alpha*gamma[2, 1]*d[2, 1]-beta*d[1, 2]*gamma[1, 1]^2-gamma*d[1, 1]*gamma[2, 1]^2+alpha*gamma[2, 1]^2*d[2, 2]-beta*d[2, 2]*gamma[2, 1]^2-gamma*d[2, 1]*gamma[2, 2]^2, G = alpha*gamma[2, 2]*d[1, 1]-beta*d[1, 2]*gamma[1, 2]-gamma*d[1, 2]*gamma[2, 1]+alpha*gamma[2, 2]^2*d[1, 2]-beta*d[2, 2]*gamma[2, 2]-gamma*d[2, 2]*gamma[2, 2], H = alpha*delta[2, 2]*d[2, 1]-beta*d[1, 2]*delta[1, 2]^2-gamma*d[1, 2]*delta[2, 1]^2+alpha*delta[2, 2]^2*d[2, 2]-beta*d[2, 2]*delta[2, 2]^2-gamma*d[2, 2]*delta[2, 2]^2, E = alpha*delta[2, 1]*d[1, 1]-beta*d[1, 2]*delta[1, 1]-gamma*d[1, 1]*delta[2, 1]+alpha*delta[2, 1]^2*d[1, 2]-beta*d[2, 2]*delta[2, 1]-gamma*d[2, 1]*delta[2, 2], B = alpha*delta[1, 1]*d[2, 1]-beta*d[1, 1]*delta[1, 1]^2-gamma*d[1, 1]*delta[1, 1]^2+alpha*delta[1, 1]^2*d[2, 2]-beta*d[2, 1]*delta[2, 1]^2-gamma*d[2, 1]*delta[1, 2]^2, D = alpha*delta[1, 2]*d[2, 1]-beta*d[1, 1]*delta[1, 2]^2-gamma*d[1, 2]*delta[1, 1]^2+alpha*delta[1, 2]^2*d[2, 2]-beta*d[2, 1]*delta[2, 2]^2-gamma*d[2, 2]*delta[1, 2]^2, A = alpha*delta[1, 1]*d[1, 1]-beta*d[1, 1]*delta[1, 1]-gamma*d[1, 1]*delta[1, 1]+alpha*delta[1, 1]^2*d[1, 2]-beta*d[2, 1]*delta[2, 1]-gamma*d[2, 1]*delta[1, 2], C = alpha*delta[1, 2]*d[1, 1]-beta*d[1, 1]*delta[1, 2]-gamma*d[1, 2]*delta[1, 1]+alpha*delta[1, 2]^2*d[1, 2]-beta*d[2, 1]*delta[2, 2]-gamma*d[2, 2]*delta[1, 2], F = alpha*delta[2, 1]*d[2, 1]-beta*d[1, 2]*delta[1, 1]^2-gamma*d[1, 1]*delta[2, 1]^2+alpha*delta[2, 1]^2*d[2, 2]-beta*d[2, 2]*delta[2, 1]^2-gamma*d[2, 1]*delta[2, 2]^2, G = alpha*delta[2, 2]*d[1, 1]-beta*d[1, 2]*delta[1, 2]-gamma*d[1, 2]*delta[2, 1]+alpha*delta[2, 2]^2*d[1, 2]-beta*d[2, 2]*delta[2, 2]-gamma*d[2, 2]*delta[2, 2];


> subs({A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0, H = 0, delta[1, 1] = 1, delta[1, 2] = 0, delta[2, 1] = 0, delta[2, 2] = 0, gamma[1, 1] = 1, gamma[1, 2] = 0, gamma[2, 1] = 0, gamma[2, 2] = 0, delta[1, 1]^2 = 0, delta[1, 2]^2 = 0, delta[2, 1]^2 = 1, delta[2, 2]^2 = 0, gamma[1, 1]^2 = 0, gamma[1, 2]^2 = 1, gamma[2, 1]^2 = 0, gamma[2, 2]^2 = 0}, {system1D});

The problem is: there is any simple way to use command "subs" when some expression such that delta[1,1]=1, gamma[1,1]=1, gamma[1,2]^2=1 have value and others are zero.

Can someone please advice and help me on this?

thanks

witribm

Hello all,

Yesterday, I upgraded to Mac OS X El Capitan.

Now, when working with Maple 2015, I feel the gui is very slow and sometimes irresponsive, when trying to scroll through my worksheets as well as through help pages (e.g., "help plot3d"). When I do the same within Maple 18, it works without any problems.

Does anybody else have the same issue?

Cheers,

Franky

if eval(simplify( subs(a=2,subs(b= 5,f))))) - n = 0 then

      hello := union(hello, {f})

end if:

after subs(a=2,subs(b= 5,f))) to verify , some of hello return -n

negative

why it is possible to pass the if condition statement?

if it is normal case, how to write correct if statement to ensure no -n 

I want to plot a cone in 3-d for any given axis vecttor, center and eccentricity.

Hello those in mapleprimes,

 

I have a question.

I opened Help and entered diff, for example, to have the explanation of how to use diff.

Whether it is diff or not, is not the problem I want to ask about now. But, what I want to ask is the following.

I cklicked the WS botton at the tool bar of the Help, so that I created the worksheet of the same contents of the help of the diff.

Then, I chose an expression in Calling Sequence. That is,

the first line shows

diff(f,x1, ..., xj)     on the left, and on the right \frac{d^j}{dx_j \cdots dx_I} f (I wrote this in the TeX ways, though

it is written in 2-D math input, actually)

 

I chose an expression on the right side, and from context menu, which appeared though right clicking of my mouse,

I selected convert to and 1-D math input, through which I changed 2-D math of the worksheet of the help file to 1-D math input.

Then, the expression shown is a strange one:

((ⅆ)^j)/(ⅆx[j] `...` ⅆx[`1`]) f;

 

This is still easier one. As for the third line in the Help, it has a more complicated form as

((ⅆ)^r)/(ⅆx[k]^m ⅆx[j] `...` ⅆx[3] ⅆx[2]^n ⅆx[1]^n) f;

 

Do you know how this way to notate is applied in maple worksheet?

Why does maplesoft use this way to notate expressions limited to the Help pages, if it is limited to the help pages.

 

Thanks in advance.

 

taro

Hello,

I use for the 3D visualization the component CAD geometry with STL files.
My STL files are created from CATIA with parts mesured in mm.
In MapleSim, in order to keep mm, I have, of course, to set "mm" in the inspector tab of the components "CAD geometry".
But, I have also to put the scale factor to 0.001.
I don't understand why I should to set it to 0.001 because :
- the CADs from CATIA are in mm.
- and the option in the inspector tab of the components "CAD geometry" is also in mm.
Would you have some precisions about the scale factor for the "CAD geometry" element ?

Thank you for your help.

I am trying to use Maple 18 to do some computations with matrices over a ring of polynomials in one variable over the integers $\mathbb{Z}[x]$, or the corresponding field of fractions $\mathbb{Q}(x)$.

 

The matrices in question are of dimension approximately 5000 and are sparse. The algorithm requires at least as many matrix multiplications as the dimension of the space.

Doing some small examples, of dimension 674, with a laptop (i7-3520 M CPU @2.9GHz with 8GB of Ram) gave the following disappointing result:

time(LinearAlgebra[MatrixMatrixMultiply](A,A);

34.694

 

When a colleague with access to a Mathematica license performed an identical calculation using sparse matrices in Mathematica, we found that Mathematica performed the calcuation in fractions of a second.

 

In small dimensional examples, constructing the matrices over the field of fractions as sparse in Maple 18 resulted in a four fold decrease in the already disappointing performance of the LinearAlgebra package in Maple 18.

 

Is there any way to improve the computational performance of Maple 18 for symbolic linear algebra? Alternatively, is the performance of Maple 2015 for symbolic linear algebra noticably better than Maple 18?

 

Thanks in advance.


Dave

 

 

Hello

 

How do I define this function? s(t) = 5*t1/2

This function shows the pace of a particle. I have to decide the time when the pace of the particle is 2 m/s

 

help 

When I run a simulation (i.e. Double Pendulum Example) MapleSim crashes with no errors or dialogues - completely shuts down. The simulation seems to compile ok, then as the plots are opening it crashes. My video card driver is up to date. Anyone know how to fix this?

Thanks.

First 218 219 220 221 222 223 224 Last Page 220 of 365