Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

In his article “Subscripts as Partial Differentiation Operatuuors , rlopez 1228 showed us a way to denote partial derivatives by repeat subscripts. For example, the sixth derivative of u(x,y) with respect to x will be denoted by u_{x,x,x,x,x,x}.

 

Is there a way to make the notation u_{x,x,x,x,x,x} even shorter by u_{6x}?

 

In the same way mixed derivatives u_{x,x,x,y,y,y,y} will be denoted as u_{3x,4y}, etc.

 

Thank you very much!

superposition said that a vector is a linear combination of other vectors

but even if i calculated the coefficient, i do not know which vector is which other vectors's linear combination

how to prove?

InputMatrix3 := Matrix([[close3(t), close3(t+1) , close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5)],
[close3(t+1) , close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5) , close3(t+6)],
[close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5) , close3(t+6) , 0],
[close3(t+3) , close3(t+4) , close3(t+5) , close3(t+6) , 0 , 0],
[close3(t+4) , close3(t+5) , close3(t+6) , 0 , 0 , 0],
[close3(t+5) , close3(t+6) , 0 , 0 , 0, 0],
[close3(t+6) , 0 , 0 , 0, 0, 0]]):
EigenValue1 := Eigenvalues(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3)):
Asso_eigenvector := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3)):
AEigenVector[tt+1] := Asso_eigenvector;

Matrix(6, 6, {(1, 1) = .514973850028629+0.*I, (1, 2) = .510603608194333+0.*I, (1, 3) = .469094659512372+0.*I, (1, 4) = .389872713818831+0.*I, (1, 5) = .279479324327359+0.*I, (1, 6) = -.154682461176604+0.*I, (2, 1) = .493994413154560+0.*I, (2, 2) = .306651336822139+0.*I, (2, 3) = -0.583656699197969e-1+0.*I, (2, 4) = -.417550308930506+0.*I, (2, 5) = -.566122865008542+0.*I, (2, 6) = .404579494288380+0.*I, (3, 1) = .449581541124671+0.*I, (3, 2) = -0.266751368453398e-1+0.*I, (3, 3) = -.529663398913996+0.*I, (3, 4) = -.359719616523673+0.*I, (3, 5) = .313717798014566+0.*I, (3, 6) = -.537405340038665+0.*I, (4, 1) = .386952162293470+0.*I, (4, 2) = -.351332186748244+0.*I, (4, 3) = -.390816901794187+0.*I, (4, 4) = .470032416161955+0.*I, (4, 5) = .231969182174424+0.*I, (4, 6) = .547134073332474+0.*I, (5, 1) = .306149178348317+0.*I, (5, 2) = -.530611390076568+0.*I, (5, 3) = .192717713961280+0.*I, (5, 4) = .291213691618787+0.*I, (5, 5) = -.562991429686901+0.*I, (5, 6) = -.431067688369314+0.*I, (6, 1) = .212576094920847+0.*I, (6, 2) = -.489443150196337+0.*I, (6, 3) = .553283259136031+0.*I, (6, 4) = -.488381938231088+0.*I, (6, 5) = .363604594054259+0.*I, (6, 6) = .195982711855368+0.*I})

Matrix(6, 6, {(1, 1) = .515428842592397+0.*I, (1, 2) = .515531996615269+0.*I, (1, 3) = .468108280940919+0.*I, (1, 4) = -.392394120975052+0.*I, (1, 5) = -.280467124908196+0.*I, (1, 6) = -.129613084502380+0.*I, (2, 1) = .494563493180197+0.*I, (2, 2) = .301273494494509+0.*I, (2, 3) = -0.622136916501293e-1+0.*I, (2, 4) = .438383262732459+0.*I, (2, 5) = .571041594120088+0.*I, (2, 6) = .377494770878435+0.*I, (3, 1) = .450886315308369+0.*I, (3, 2) = -0.323387895921418e-1+0.*I, (3, 3) = -.527636820417566+0.*I, (3, 4) = .332744872607714+0.*I, (3, 5) = -.322934536375586+0.*I, (3, 6) = -.549772001891837+0.*I, (4, 1) = .385916641681991+0.*I, (4, 2) = -.352066020655722+0.*I, (4, 3) = -.389655495441319+0.*I, (4, 4) = -.450049711766943+0.*I, (4, 5) = -.221529986447276+0.*I, (4, 6) = .568916672007495+0.*I, (5, 1) = .305485655770791+0.*I, (5, 2) = -.528766119966973+0.*I, (5, 3) = .201065789602278+0.*I, (5, 4) = -.310329356773806+0.*I, (5, 5) = .555973984740943+0.*I, (5, 6) = -.425730045170186+0.*I, (6, 1) = .210210489500614+0.*I, (6, 2) = -.488744465076970+0.*I, (6, 3) = .553484076328700+0.*I, (6, 4) = .494245653290329+0.*I, (6, 5) = -.364390406353340+0.*I, (6, 6) = .183130120876843+0.*I})
mm1 := 1;
solve(
[AEigenVector[mm1][2][1][6] = m1*AEigenVector[mm1][2][1][1]+m2*AEigenVector[mm1][2][1][2]+m3*AEigenVector[mm1][2][1][3]+m4*AEigenVector[mm1][2][1][4]+m5*AEigenVector[mm1][2][1][5],
AEigenVector[mm1][2][2][6] = m1*AEigenVector[mm1][2][2][1]+m2*AEigenVector[mm1][2][2][2]+m3*AEigenVector[mm1][2][2][3]+m4*AEigenVector[mm1][2][2][4]+m5*AEigenVector[mm1][2][2][5],
AEigenVector[mm1][2][3][6] = m1*AEigenVector[mm1][2][3][1]+m2*AEigenVector[mm1][2][3][2]+m3*AEigenVector[mm1][2][3][3]+m4*AEigenVector[mm1][2][3][4]+m5*AEigenVector[mm1][2][3][5],
AEigenVector[mm1][2][4][6] = m1*AEigenVector[mm1][2][4][1]+m2*AEigenVector[mm1][2][4][2]+m3*AEigenVector[mm1][2][4][3]+m4*AEigenVector[mm1][2][4][4]+m5*AEigenVector[mm1][2][4][5],
m1^2 + m2^2 + m3^2 + m4^2 + m5^2 = 1], [m1, m2, m3, m4, m5]);

[m1 = .4027576723+.5022235499*I, m2 = -.5922841426-1.043213223*I, m3 = -.1130969773+.9150300317*I, m4 = .9867039883-.5082455178*I, m5 = -1.400123192+.1536850673*I], [m1 = .4027576723-.5022235499*I, m2 = -.5922841426+1.043213223*I, m3 = -.1130969773-.9150300317*I, m4 = .9867039883+.5082455178*I, m5 = -1.400123192-.1536850673*I]

mm1 := 2;
solve(
[AEigenVector[mm1][2][1][6] = m1*AEigenVector[mm1][2][1][1]+m2*AEigenVector[mm1][2][1][2]+m3*AEigenVector[mm1][2][1][3]+m4*AEigenVector[mm1][2][1][4]+m5*AEigenVector[mm1][2][1][5],
AEigenVector[mm1][2][2][6] = m1*AEigenVector[mm1][2][2][1]+m2*AEigenVector[mm1][2][2][2]+m3*AEigenVector[mm1][2][2][3]+m4*AEigenVector[mm1][2][2][4]+m5*AEigenVector[mm1][2][2][5],
AEigenVector[mm1][2][3][6] = m1*AEigenVector[mm1][2][3][1]+m2*AEigenVector[mm1][2][3][2]+m3*AEigenVector[mm1][2][3][3]+m4*AEigenVector[mm1][2][3][4]+m5*AEigenVector[mm1][2][3][5],
AEigenVector[mm1][2][4][6] = m1*AEigenVector[mm1][2][4][1]+m2*AEigenVector[mm1][2][4][2]+m3*AEigenVector[mm1][2][4][3]+m4*AEigenVector[mm1][2][4][4]+m5*AEigenVector[mm1][2][4][5],
m1^2 + m2^2 + m3^2 + m4^2 + m5^2 = 1], [m1, m2, m3, m4, m5]);

[m1 = .4262845394-.5114193433*I, m2 = -.6313720018+1.072185334*I, m3 = -0.7337582213e-1-.9580760394*I, m4 = -1.036525681-.5400714113*I, m5 = 1.412710014+.1874839516*I], [m1 = .4262845394+.5114193433*I, m2 = -.6313720018-1.072185334*I, m3 = -0.7337582213e-1+.9580760394*I, m4 = -1.036525681+.5400714113*I, m5 = 1.412710014-.1874839516*I]

any user of the community has material ppt or pdf on presentation of clickable math popup and maple in computaconal applied to mathematics.

any help on the origin of math clickable popup;? place the link if they were so friendly!

hello. before I used Mapple 15. But then I`ve run Mapple 16 and now I`ve a problem. I can`t use this program. I open the program, everthing is in the rule, but if I want to write any mathemathical function, or a letter, such as- x or x+2, the program does`t give any reaction. program only gives reaction the numbers.

Please, help me. (my english isn`t very good, and I don`t know I`ve explained my opinion).

a = c1*b + c2*c;
b = c3*a + c4*c;

where a, b, c are vector, a is linear combination of b and c, b is linear combination of a and c, and c1^2 + c2^2 = 1, c3^2 + c4^2 = 1

assume equation for a = c1*b + c2*c; is
Matrix([[y1],[y2]]) = Matrix([[x1,x2],[x3,x4]])*Matrix([[c1],[c2]]);

how to find c1 and c2 when c1^2 + c2^2 = 1

 

nothing return after solve({y1 = c1*x1 + c2*x2, y2 = c1*x3 + c2*x4, c1^2 + c2^2 = 1}, {c1,c2});

https://drive.google.com/file/d/0B2D69u2pweEvMV92SGhtRGZONFk/edit?usp=sharing

a error and code in this attachment mw

i can pdsolve it, but numeric pdsolve it get error

Hi -

 

    It is often useful useful to generate two procedures --- one to evaluate a function and one to evaluate its gradient.  The procedure codegen[GRADIENT] does not treat functions of array variables.  Why doesn't GRADIENT support array variables?  Would it be possible to replace the array variables by variables, apply GRADIENT, and then replace the array variables by variables again?

 

Best wishes,

David

 

> sol := pdsolve({ICS, sys1, sys2, sys3, sys4, sys5, sys6, sys7}, numeric, method = rkf45, parameters = [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p], output = listprocedure);

Error, (in pdsolve) invalid input: `pdsolve/numeric` expects its 2nd argument, IBCs, to be of type {set, list}, but received method = rkf45

 

restart;

x11:=[1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11:= [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11:= [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79, 7.91, 7.96, 8.05];

u11 := [seq(close3(t+t3), t3=0..26)];

sys1:=Diff(a1(s,t),s) = a*a1(s,t)+ b*a2(s,t)+ c*a3(s,t)+ d*u(t);

sys2:=Diff(a2(s,t),s) = e*a1(s,t)+ f*a2(s,t)+ g*a3(s,t)+ h*u(t);

sys3:=Diff(a3(s,t),s) = i*a1(s,t)+ j*a2(s,t)+ k*a3(s,t)+ l*u(t);

sys4:=Diff(y(t),t) = m*a1(s,t)+n*a2(s,t)+ o*a3(s,t)+ p*u(t);

sys5:= Diff(a1(s,t),t) = a1(s,t);

sys6:= Diff(a2(s,t),t) = a2(s,t);

sys7:= Diff(a3(s,t),t) = a3(s,t);

sol := pdsolve([sys1, sys2, sys3,sys4,sys5,sys6,sys7]);

t2 := [seq(i, i=1..27)];

xt1 := subs(_C1=1,sol[1]); # a1(t)

xt2 := subs(_C1=1,sol[2]); # a2(t)

xt3 := subs(_C1=1,sol[3]); # a3(t)

ut1 := subs(_C1=1,sol[4]); # u(t)

tim := [seq(n, n=1..27)];

N:=nops(tim):

ICS:=a1(1)=x11[1],a2(1)=y11[1],a3(1)=z11[1],u1(1)=u11[1];

sol:=pdsolve({sys1, sys2, sys3,sys4,sys5,sys6,sys7,ICS}, numeric, method=rkf45, parameters=[ a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p],output=listprocedure);

ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003,.003,.003,.003,.003);

ans:=proc(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) sol(parameters=[ a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p]);

add((xt1(tim[i])-x11[i])^2,i=1..N)+add((xt2(tim[i])-y11[i])^2,i=1..N)+add((xt3(tim[i])-z11[i])^2,i=1..N)+add((ut1(tim[i])-u11[i])^2,i=1..N);

end proc;

result1 := Optimization:-Minimize(ans,initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003,.003,.003,.003,.003]);

https://drive.google.com/file/d/0B2D69u2pweEvU3NpWWQwS3U1XzQ/edit?usp=sharing
https://drive.google.com/file/d/0B2D69u2pweEvMnFabkdiX1hpYVk/edit?usp=sharing

 

a1 := Diff(x1(s,t),s$2) = a*x1(s,t)+b*x2(s,t)+c*x3(s,t)+d*u(t);
a2 := Diff(x1(s,t),t)=x1(s,t);
b1 := Diff(x2(s,t),s$2) = e*x1(s,t)+f*x2(s,t)+g*x3(s,t)+h*u(t);
b2 := Diff(x2(s,t),t)=x2(s,t);
c1 := Diff(x3(s,t),s$2) = i*x1(s,t)+j*x2(s,t)+k*x3(s,t)+l*u(t);
c2 := Diff(x3(s,t),t)=x3(s,t);
sys := [a1, a2, b1, b2, c1, c2];
sol := pdsolve(sys);

length exceed limit

Hi,

I get the error in the following code

restart:

gama1:=0.01:

zet:=0;
#phi0:=0.00789:
Phiavg:=0.02;
lambda:=0.01;
Ha:=1;


                               0
                              0.02
                              0.01
                               1
rhocu:=2/(1-zet^2)*int((1-eta)*rho(eta)*c(eta)*u(eta),eta=0..1-zet):

eq1:=diff(u(eta),eta,eta)+1/(mu(eta)/mu1[w])*(1-Ha^2*u(eta))+((1/(eta)+1/mu(eta)*(mu_phi*diff(phi(eta),eta)))*diff(u(eta),eta));
eq2:=diff(T(eta),eta,eta)+1/(k(eta)/k1[w])*(-2/(1-zet^2)*rho(eta)*c(eta)*u(eta)/(p2*10000)+( (a[k1]+2*b[k1]*phi(eta))/(1+a[k1]*phi1[w]+b[k1]*phi1[w]^2)*diff(phi(eta),eta)+k(eta)/k1[w]/(eta)*diff(T(eta),eta) ));
eq3:=diff(phi(eta),eta)+phi(eta)/(N[bt]*(1+gama1*T(eta))^2)*diff(T(eta),eta);
      /  d   /  d         \\   mu1[w] (1 - u(eta))
      |----- |----- u(eta)|| + -------------------
      \ deta \ deta       //         mu(eta)      

           /             /  d           \\               
           |      mu_phi |----- phi(eta)||               
           | 1           \ deta         /| /  d         \
         + |--- + -----------------------| |----- u(eta)|
           \eta           mu(eta)        / \ deta       /
                                /      /                        
                                |      |                        
/  d   /  d         \\     1    |      |  rho(eta) c(eta) u(eta)
|----- |----- T(eta)|| + ------ |k1[w] |- ----------------------
\ deta \ deta       //   k(eta) |      |         5000 p2        
                                \      \                        

                                /  d           \
     (a[k1] + 2 b[k1] phi(eta)) |----- phi(eta)|
                                \ deta         /
   + -------------------------------------------
                                          2     
         1 + a[k1] phi1[w] + b[k1] phi1[w]      

            /  d         \\\
     k(eta) |----- T(eta)|||
            \ deta       /||
   + ---------------------||
           k1[w] eta      ||
                          //
                                      /  d         \
                             phi(eta) |----- T(eta)|
          /  d           \            \ deta       /
          |----- phi(eta)| + ------------------------
          \ deta         /                          2
                             N[bt] (1 + 0.01 T(eta))
mu:=unapply(mu1[bf]*(1+a[mu1]*phi(eta)+b[mu1]*phi(eta)^2),eta):
k:=unapply(k1[bf]*(1+a[k1]*phi(eta)+b[k1]*phi(eta)^2),eta):
rhop:=3880:
rhobf:=998.2:
cp:=773:
cbf:=4182:
rho:=unapply(  phi(eta)*rhop+(1-phi(eta))*rhobf ,eta):
c:=unapply(  (phi(eta)*rhop*cp+(1-phi(eta))*rhobf*cbf )/rho(eta) ,eta):
mu_phi:=mu1[bf]*(a[mu1]+2*b[mu1]*phi(eta)):

a[mu1]:=39.11:
b[mu1]:=533.9:
mu1[bf]:=9.93/10000:
a[k1]:=7.47:
b[k1]:=0:
k1[bf]:=0.597:
zet:=0.5:
#phi(0):=1:
#u(0):=0:
phi1[w]:=phi0:
N[bt]:=0.2:
mu1[w]:=mu(0):
k1[w]:=k(0):

eq1:=subs(phi(0)=phi0,eq1):
eq2:=subs(phi(0)=phi0,eq2):
eq3:=subs(phi(0)=phi0,eq3):

#A somewhat speedier version uses the fact that you really need only compute 2 integrals not 3, since one of the integrals can be written as a linear combination of the other 2:
Q:=proc(pp2,fi0) local res,F0,F1,F2,a,INT0,INT10,B;
global Q1,Q2;
print(pp2,fi0);
if not type([pp2,fi0],list(numeric)) then return 'procname(_passed)' end if:
res := dsolve(subs(p2=pp2,phi0=fi0,{eq1=0,eq2=0,eq3=0,u(1)=lambda/(phi(1)*rhop/rhobf+(1-phi(1)))*D(u)(1),D(u)(0)=0,phi(1)=phi0,T(1)=0,D(T)(1)=1}), numeric,output=listprocedure):
F0,F1,F2:=op(subs(res,[u(eta),phi(eta),T(eta)])):
INT0:=evalf(Int((1-eta)*F0(eta),eta=0..1-zet));
INT10:=evalf(Int((1-eta)*F0(eta)*F1(eta),eta=0..1-zet));
B:=(-cbf*rhobf+cp*rhop)*INT10+ rhobf*cbf*INT0;
a[1]:=2/(1-zet^2)*B-10000*pp2;
a[2]:=INT10/INT0-Phiavg;
Q1(_passed):=a[1];
Q2(_passed):=a[2];
if type(procname,indexed) then a[op(procname)] else a[1],a[2] end if
end proc;
#The result agrees very well with the fsolve result.
#Now I did use a better initial point. But if I start with the same as in fsolve I get the same result in just about 2 minutes, i.e. more than 20 times as fast as fsolve:

Q1:=proc(pp2,fi0) Q[1](_passed) end proc;
Q2:=proc(pp2,fi0) Q[2](_passed) end proc;
Optimization:-LSSolve([Q1,Q2],initialpoint=[6.5,exp(-1/N[bt])]);


proc(pp2, fi0)  ...  end;
proc(pp2, fi0)  ...  end;
proc(pp2, fi0)  ...  end;
              HFloat(6.5), HFloat(0.006737946999)

 

 

the error is :

Error, (in Optimization:-LSSolve) system is singular at left endpoint, use midpoint method instead

how can I fix it.

Thanks

 

Amir

I have exported Maple code as a Maplet file.  When I click on the file Maplet Launcher opens but nothing "runs".  It looks like it's trying because the icon flashes, but no window opens.  The Maple worksheet from which the Maplet was generated runs fine.

Any suggestions as to how to get Maplet Launcher to run my Maplets?

 

Thanks,

Rollie

Hello,

In a mechanical problem, i have to deal with a system with trigonometric expression. The variables are gamma[1](t), psi[1](t), phi[1](t), alpha(t), beta(t), x(t). The orthers are parameters.

I would like to have a explicit relations between  gamma[1](t), psi[1](t), phi[1](t) and alpha(t), beta(t), x(t).

In orthers words, i would like to have 

alpha(t)= f(gamma[1](t), psi[1](t), phi[1](t)).

beta(t)= f(gamma[1](t), psi[1](t), phi[1](t)).

 x(t) = f( gamma[1](t), psi[1](t), phi[1](t)).

Of course, the expresions of alpha(t), beta(t), and x(t) should be complex. Nevertheless, it will avoid me to have to solve Newton Raphson algorithm to solve these constraints equations.

Normally, it should be feasible.

When i have only one equation and not a system, isolate function is helpful.

But in this case, i don't manage to have my relations.

Have you some ideas to expression these relations ?

alpha(t)= f(gamma[1](t), psi[1](t), phi[1](t)).

beta(t)= f(gamma[1](t), psi[1](t), phi[1](t)).

 x(t) = f( gamma[1](t), psi[1](t), phi[1](t)).

Here the code of the equations :

restart:
with(LinearAlgebra):
with(Student[MultivariateCalculus]):
with(plots):
constants:= ({constants} minus {gamma})[]:
`evalf/gamma`:= proc() end proc:
`evalf/constant/gamma`:= proc() end proc:
unprotect(gamma);
restart:
with(LinearAlgebra):
with(Student[MultivariateCalculus]):
with(plots):
constants:= ({constants} minus {gamma})[]:
`evalf/gamma`:= proc() end proc:
`evalf/constant/gamma`:= proc() end proc:
unprotect(gamma);
eq_liai[1]:= rF[1]*cos(a[1])-cos(a[1])*cos(gamma[1](t))*e[1]-l[1]*(cos(phi[1](t))*cos(a[1])*cos(gamma[1](t))*cos(psi[1](t))-cos(phi[1](t))*cos(a[1])*sin(gamma[1](t))*sin(psi[1](t))-sin(a[1])*sin(phi[1](t)))-cos(alpha(t))*rBTP[1]*cos(a[1])-sin(alpha(t))*sin(beta(t))*rBTP[1]*sin(a[1])-sin(alpha(t))*cos(beta(t))*h = 0;
eq_liai[2]:= rF[1]*sin(a[1])-sin(a[1])*cos(gamma[1](t))*e[1]-l[1]*(cos(phi[1](t))*sin(a[1])*cos(gamma[1](t))*cos(psi[1](t))-cos(phi[1](t))*sin(a[1])*sin(gamma[1](t))*sin(psi[1](t))+cos(a[1])*sin(phi[1](t)))-cos(beta(t))*rBTP[1]*sin(a[1])+sin(beta(t))*h = 0;
eq_liai[3] := h[1]+sin(gamma[1](t))*e[1]+l[1]*(sin(gamma[1](t))*cos(psi[1](t))+cos(gamma[1](t))*sin(psi[1](t)))*cos(phi[1](t))+sin(alpha(t))*rBTP[1]*cos(a[1])-cos(alpha(t))*sin(beta(t))*rBTP[1]*sin(a[1])-cos(alpha(t))*cos(beta(t))*h-z(t) = 0;

or directly a maple file

constraints.mw

Thanks a lot for your help

First 273 274 275 276 277 278 279 Last Page 275 of 361