Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Hi,

Does Maplesim allow hardware integration such as a joystick so that I can feed in joystick commands (via USB or serial) from the computer and then control my Maplesim model in the virtual space? Suggestions?

 

Thank you.

Hi,

I'm currently working on a manipulator model in Maplesim and will import CAD attachments to each of the links. The Solidworks model, once imported to Maplesim, is not located in the same position as the Maplesim part but is offset by X,Y,Z. The scaling is also off. Is there some way to align the CAD to the component instead of trial and error?

Thank you.

 

Maple Player seems like it could be an outstanding piece of software, yet with the new operating system for Ipad, the program crashes immediately. I am unable to find any solutions. I also stumbled across a post in which Maplesoft is no longer providing support for the APP. Is this true?

@Markiyan Hirnyk 

 

First try, i change to 

result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

Second try, i change to use ans for >=0, ans2 <=0

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2>=0,i=1..N)
end proc;
ans2:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2<=0,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans, ans2],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

 

 

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]: 
u11 := [7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7];
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d1 := Diff(u1(t),t) = 0;
ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[1];
sol:=dsolve({a1,b1,c1,d1, a2,b2,c2,d2,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);
X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));
tim := [seq(n, n=1..27)];
N:=nops(tim):
ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

In my research a I need to solve the linear equation (getting its null space) under some constraints.

The matrix is given below:

 

The constraints shall be (x[1]...x[16]>0, x[17]...x[20] arbitary...)

The solutions shall actually be a canonical combination of a lot of vectors, (canonical combination means possitive sums of vectors). And I wish to get those vectors. is there a way that I could achieve this by Maple?

When you use the slider without Do(%MathContainer1 = StandardError(Variance, R)):
everything works ok but when you add Do(%MathContainer1 = StandardError(Variance, R)):
Maple Crashes.....

Strange...

LL_102)_Covariance_M.mw

@Markiyan Hirnyk 

First try, i change to 

result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

Second try, i change to use ans for >=0, ans2 <=0

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2>=0,i=1..N)
end proc;
ans2:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2<=0,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans, ans2],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

 

 

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]:
u11 := [7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7];
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d1 := Diff(u1(t),t) = 0;
ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[1];
sol:=dsolve({a1,b1,c1,d1, a2,b2,c2,d2,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);
X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));
tim := [seq(n, n=1..27)];
N:=nops(tim):
ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

hi,

     there is a common  differential equation in my maple note,the solution of the eq. can be expressed by

associated Legendre function(s),but i get a result by hypergeometric representation.how i can translate the later into a  single Legendre fun?

 Thank you in advance  

ode := 'sin(theta)*(diff(sin(theta)*(diff(Theta(theta), theta)), theta))'/Theta(theta)+l*(l+1)*sin(theta)^2 = m^2

sin(theta)*(diff(sin(theta)*(diff(Theta(theta), theta)), theta))/Theta(theta)+l*(l+1)*sin(theta)^2 = m^2

(1)

dsolve(ode)

Theta(theta) = _C1*((1/2)*cos(2*theta)-1/2)^((1/2)*m)*sin(2*theta)*hypergeom([(1/2)*m+(1/2)*l+1, (1/2)*m-(1/2)*l+1/2], [3/2], (1/2)*cos(2*theta)+1/2)/(1-cos(2*theta))^(1/2)+_C2*hypergeom([(1/2)*m-(1/2)*l, (1/2)*m+(1/2)*l+1/2], [1/2], (1/2)*cos(2*theta)+1/2)*(-2*cos(2*theta)+2)^(1/2)*((1/2)*cos(2*theta)-1/2)^((1/2)*m)/(1-cos(2*theta))^(1/2)

(2)

`assuming`([simplify(dsolve(ode))], [l::posint, m::integer, l >= m])

Theta(theta) = ((1/2)*cos(2*theta)-1/2)^((1/2)*m)*(sin(2*theta)*hypergeom([(1/2)*m+(1/2)*l+1, (1/2)*m-(1/2)*l+1/2], [3/2], (1/2)*cos(2*theta)+1/2)*_C1+2^(1/2)*(1-cos(2*theta))^(1/2)*hypergeom([(1/2)*m-(1/2)*l, (1/2)*m+(1/2)*l+1/2], [1/2], (1/2)*cos(2*theta)+1/2)*_C2)/(1-cos(2*theta))^(1/2)

(3)

convert(Theta(theta) = _C1*((1/2)*cos(2*theta)-1/2)^((1/2)*m)*sin(2*theta)*hypergeom([(1/2)*m+(1/2)*l+1, (1/2)*m-(1/2)*l+1/2], [3/2], (1/2)*cos(2*theta)+1/2)/(1-cos(2*theta))^(1/2)+_C2*hypergeom([(1/2)*m-(1/2)*l, (1/2)*m+(1/2)*l+1/2], [1/2], (1/2)*cos(2*theta)+1/2)*(-2*cos(2*theta)+2)^(1/2)*((1/2)*cos(2*theta)-1/2)^((1/2)*m)/(1-cos(2*theta))^(1/2), `2F1`)

Theta(theta) = (1/2)*_C1*((1/2)*cos(2*theta)-1/2)^((1/2)*m)*sin(2*theta)*Pi^(1/2)*GAMMA(-(1/2)*m-(1/2)*l)*JacobiP(-(1/2)*m-(1/2)*l-1, 1/2, m, -cos(2*theta))/((1-cos(2*theta))^(1/2)*GAMMA(1/2-(1/2)*m-(1/2)*l))+_C2*Pi^(1/2)*GAMMA(1-(1/2)*m+(1/2)*l)*JacobiP(-(1/2)*m+(1/2)*l, -1/2, m, -cos(2*theta))*(-2*cos(2*theta)+2)^(1/2)*((1/2)*cos(2*theta)-1/2)^((1/2)*m)/((1-cos(2*theta))^(1/2)*GAMMA(-(1/2)*m+(1/2)*l+1/2))

(4)

``

 

Download question_12.19.mw

 

Is there a way to play animations in maplets?

I can send an animation to a plotter, but don't know how to play it.  

Thanks, Rollie

I have a linear space spanned by the column vectors of:

I want to know its exact intersection of the first quadrant in 16 dimensional space (meaning Sum(a[i]*e[i]),i=1..16), how could I accomplish it? The output could possibly be the vectors defining the convex cone in higher dimensional space...

 

 

I have an ipad air 16G running ios 7.0.4 and downloaded the MaplePlayer APP.  t seems to crash on several of the routines for example, "Approximaing Sphere" and "Linear System Tutor". The app was last updated in 2011.  Do you have plans to any upgrades plan in the near future?

Hi MaplePrimers,

I'm trying to solve a system of algebraic equations using 'solve' [float].  I'd prefer to use 'solve' over 'fsolve', as 'solve' solves my system in about 0.05s, whereas fsolve takes about 5 seconds.  I need to solve the system repeatedly at a different points, so time is important.  I don't know why there is such a large difference in time ... 

I have a few piecewise functions of order 3 to 5.  It solves fine with the other (piecewise) equations, but adding one piecewise function which gives me an error while trying to solve:

Error, (in RootOf) _Z occurs but is not the dependent variable.

I think this is due to solve finding multiple solutions.  Is there a way to limit solve to only real solutions?

Thanks in advance!

Hello, please i would like someone to please explain Hermite Polynomial for me. I have zero knowledge of this and if possible give examples and references. Also, on how to Normalize Hermite Polynomial and Ortogonarity of Hermite Polynomial. Thanks

Hello, I have quite a complex thing to solve, but would simplify it here. I would like to solve the unknown in a matrix, how can I use the 'solve' function? For example

A:=Matrix(3,1,4)
B:=Matrix(3,1,[2,7,9])
The relation between them is A=B*y

How can I use the below function?
solve(A=B*y,y)

 

I have a programme which examine how well a particular set of data fits a theoretical function.

In fact, I faced a problem : the programme returns only one solution and I guess in an arbitrary way.

I would like to find a way to define an interval in which the programme seeks solutions .

How can I do so?

 

with (Optimization)
[ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve,QPSolve];


data := [[2.954488^2, 1.644900e-5], [3.132092^2,1.614900e-5], [3.307416^2, 1.594200e-5], [3.471311^2, 1.550700e-5], [3.559775^2, 1.450200e-5], [3.669332^2, 1.499400e-5], [3.825572^2, 1.476900e-5], [3.962449^2, 4.133000e-8], [4.200714^2, 1.320900e-5],
[4.434636^2, 1.433400e-5], [4.638319^2, 1.259100e-5], [4.832908^2, 1.258500e-5], [5.078484^2,
1.216200e-5], [5.315167^2, 1.164300e-5], [5.662155^2, 1.131000e-5], [5.916080^2, 1.082400e-5],
[6.208865^2, 1.054800e-5], [6.526868^2, 1.002600e-5], [6.880407^2, 1.006200e-5], [7.243618^2, 9.594000e-6], [7.607233^2,
9.288000e-6], [7.916439^2, 8.958000e-6], [8.320457^2, 8.664000e-6], [8.721812^2, 8.439000e-6], [9.007774^2, 8.325000e-6], [8.721812^2, 8.439000e-6], [9.007774^2,8.325000e-6], [9.393083^2, 7.878000e-6], [9.668506^2, 7.755000e-6], [9.988994^2,7.623000e-6], [10.40192^2, 7.367000e-6], [10.94532^2, 6.928000e-6], [11.38244^2,6.812000e-6], [11.85200^2, 6.720000e-6], [12.18811^2, 6.422000e-6], [12.67281^2, 6.403000e-6], [12.96341^2,6.514000e-6], [13.49185^2, 6.032000e-6], [13.76590^2, 6.103000e-6], [14.4072^2,6.143000e-6], [14.45476^2, 6.095000e-6], [14.76313^2, 5.758000e-6], [15.09868^2,6.965000e-6]]:

f:= x -> abs(((2*(c*exp(-b*1.5e-6)/(2*150*(c^2-((1+I)*(sqrt(3.14*x/8.5e-5)))^2)))*(2*(((1-I)*c/(2*(sqrt(3.14*x/8.5e-5))))-((0.026/150)*sqrt(8.5e-5/2e-5)))*exp(-c*0.5e-3)+((1+((0.026/150)*sqrt(8.5e-5/2e-5)))*(1-((1-I)*c/(2*(sqrt(3.14*x/8.5e-5)))))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3))-((1-((0.026/150)*sqrt(8.5e-5/2e-5)))*(1+((1-I)*c/(2*(sqrt(3.14*x/8.5e-5)))))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3)))+(b/(2*a*(b^2-((1+I)*(sqrt(3.14*x/9e-6)))^2)*((2*(1-((0.026/150)*sqrt(8.5e-5/2e-5)))*(1+((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150)))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3-b*1.5e-6))-(2*(1+((0.026/150)*sqrt(8.5e-5/2e-5)))*(1-((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150)))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3-b*1.5e-6))-((1-((0.026/150)*sqrt(8.5e-5/2e-5)))*(1-((a/150)*sqrt(8.5e-5/9e-6)))*(1-((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3+((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))-((1-((0.026/150)*sqrt(8.5e-5/2e-5)))*(1+((a/150)*sqrt(8.5e-5/9e-6)))*(1+((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3-((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))+((1+((0.026/150)*sqrt(8.5e-5/2e-5)))*(1+((a/150)*sqrt(8.5e-5/9e-6)))*(1-((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3+((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))+((1+((0.026/150)*sqrt(8.5e-5/2e-5)))*(1-((a/150)*sqrt(8.5e-5/9e-6)))*(1+((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3-((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))))/(((1-((0.026/150)*sqrt(8.5e-5/2e-5)))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3))*(((1-((a/150)*sqrt(8.5e-5/9e-6)))*(1+((0.026/150)*sqrt(8.5e-5/2e-5))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))+((1+((a/150)*sqrt(8.5e-5/9e-6)))*(1-((0.026/150)*sqrt(8.5e-5/2e-5))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(-((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6)))-((1+((0.026/150)*sqrt(8.5e-5/2e-5)))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3))*(((1+((a/150)*sqrt(8.5e-5/9e-6)))*(1+((0.026/150)*sqrt(8.5e-5/2e-5))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))+((1-((a/150)*sqrt(8.5e-5/9e-6)))*(1-((0.026/150)*sqrt(8.5e-5/2e-5))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(-((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6)))))))*((1+I)*(sqrt(3.14*x/2e-5)))*exp(-190e-6*((1+I)*(sqrt(3.14*x/2e-5))))):


residuals := map(p -> (f(p[1])-p[2]), data):
R:= LSSolve(residuals);

 

First 274 275 276 277 278 279 280 Last Page 276 of 361